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Abstract
We present Floquet calculations of high harmonic generation (HHG) for the lowest two
electronic states of the H+

2 ion by strong continuous-wave laser fields. We solve the
non-Hermitian matrix problem to get accurate solutions to the periodic time-dependent
Schrödinger equation (TDSE) by applying a pseudospectral representation combined with a
complex absorbing potential method. This represents an alternative approach to direct TDSE
solutions to obtain the harmonic spectra for the ion. We compare our HHG rates for the lower
and upper states of H+

2 , which correspond to the gerade and ungerade ground states in the
field-free case, with previously obtained results in the literature. We show that the
enhancement of the ionization rates at the critical internuclear separation Rc ≈ 8 au plays some
role in the appearance of very strong harmonic orders n = 5–11 at λ = 1064 nm and n = 5–9
at λ = 800 nm and intensity I = 1014 W cm−2.

Keywords: hydrogen molecular ion, Floquet theory, harmonic generation, pseudospectral
method, complex absorbing potential
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1. Introduction

From both theoretical and experimental points of view, high-
harmonic generation (HHG) is one of the most studied
nonlinear phenomena for atoms and molecules interacting with
an intense laser field, in which the system emits radiation at
multiples of the laser frequency [1]. The physical mechanism
of HHG is well understood for atoms using a three-step model
[2–4]: (i) the electron is released by tunnel ionization from the
atom core; (ii) the free electron is accelerated by the oscillating
laser field, and later is driven back to the core; (iii) the electron
can recombine with the core to emit a high-energy photon. This
semiclassical formulation for the three-step-model is based
on the strong-field approximation by Lewenstein et al [4].
The model predicts a plateau in the harmonic spectra where
many harmonics have similar strength, and it ends with a sharp
cutoff. At the cutoff the maximum energy is well approximated
by the simple and universal formula Ip + 3.17Up, where Ip is

the ionization potential of the atom and Up is the pondermotive
potential, defined as Up = (F/2ω)2, with F the laser electric
field strength and ω, the angular frequency in atomic units,
respectively. The cutoff position can be estimated by

Nmax = (Ip + 3.17Up)/ω. (1)

For symmetric diatomic molecules Kopold et al [5]
extended the discussion of a (semi)-classical cutoff formula.
They investigated two phenomena, which can become
particularly important if one considers dissociating molecules,
i.e., systems at large internuclear separation R. The so-called
simpleman formula (1) is modified, since the ionized electron
produced at nucleus A upon re-collision can be re-combining
either at nucleus A or B. This can lead to a cutoff that is higher
than the atomic one given in equation (1). In addition, there
is the possibility that the field ionizes an electron at atom
A, accelerates it, and recombination occurs directly at atom B.
These classical cutoff positions have to be taken with a grain of
salt, since they ignore the potential role of the Compton profile
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of the initial state, and the argumentation based on electron
localization during ionization and recombination makes sense
only at large R, if the molecular orbital nature of the states
is taken into account. Nevertheless, [5] serves to illustrate
that the cutoff energies represent stationary points at which
enhanced HHG should be observed. Evidence is presented in
[5] from quantum calculations in a zero-range model potential
for molecular cutoffs higher than equation (1), increasing the
coefficient from 3.17 by up to a third for the cases considered.

Theoretical investigations for diatomic molecules, such
as the H2 molecule and the H+

2 ion had been initially carried
out by Krause et al [6] and Zuo et al [7, 8]. They performed a
direct numerical solution of the time-dependent Schrödinger
equation (TDSE) to obtain the HHG spectra. An alternative
approach is the Floquet formalism which was employed
successfully by Potvliege and Shakeshaft [10] to obtain the
HHG spectra for H atoms using Sturmian basis functions. A
treatment of HHG for complex atoms in intense laser fields
based on R-matrix-Floquet theory has been given by Burke
et al [11, 12]. Yet another method for time-periodic systems is
the Floquet approach combined with complex rotation of the
coordinate [13, 14].

For atomic hydrogen, the hydrogen molecule and
molecular ion calculations of HHG spectra within the Floquet
method combined with a complex rotated coordinate have been
extensively investigated by Chu and his co-workers [15–19]. In
those works a generalized pseudospectral approach was used
for the spatial discretization of the resonant Hamiltonian, and
a non-Hermitian split-operator technique was implemented
for the time-evolution operator. Telnov and Chu presented
benchmark results for HHG for monochromatic intense laser
fields for the H+

2 ion in [18].
In the present article our goal is to report on HHG

spectra for a linearly polarized intense laser field (with electric
field aligned with the molecular axis) for the lowest two
states of H+

2 , using the Floquet approach combined with a
complex absorbing potential (CAP). This methodology was
implemented before [20] to calculate the ionization rate for the
lowest two electronic states of the ion by strong continuous
laser fields in the low-frequency limit. We compare our results
for the HHG with those obtained in [8] and [18]. Our method
differs from that of [18] in that we do not use a time propagator,
but assemble the wave function from the Floquet eigenstates.

The organization of this paper is as follows. In section 2.1
we start with the basic theoretical methodology to solve
the TDSE for the H+

2 ion, while making use of the time
periodicity. In section 2.2 we provide details of how to get HHG
spectra within the non-Hermitian Floquet approach. Section 3
discusses our results for HHG spectra for the lowest two states
of the H+

2 , which is followed by conclusions.

2. Theory

2.1. The Floquet Hamiltonian

In the presence of an external field, for a diatomic molecule,
such as H+

2 the induced electronic motion happens on a
faster time scale than the nuclear motion. Thus, we treat

the dynamics in the Born–Oppenheimer approximation, in
which the two nuclei are fixed (on the au time scale), and
only the electronic motion is taken into account. The field-free
electronic Hamiltonian of the H+

2 molecule can be written in
atomic units as

H0 = −1

2
∇2

r − 1∣∣r + R
2 ez

∣∣ − 1∣∣r − R
2 ez

∣∣ , (2)

where r is the electron position vector and R is the internuclear
separation.

If we assume that the interaction of the electron with the
external electric field VL(r, t) is periodic in time with period
T = 2π/ω, that is, H(r, t+T ) = H(r, t), according to Floquet
theory [21, 22], the solution �(r, t) to the TDSE for the system

i
∂

∂t
�(r, t) = H(t)�(r, t) = [H0 + VL(r, t)]�(r, t), (3)

can be written as:

�(r, t) = e(−iEF t)�(r, t), (4)

�(r, t + T ) = �(r, t) =
∞∑

n=−∞
einωtφn(r) ≈

NF∑
−NF

einωtφn(r),

(5)

where EF is called the Floquet quasi-energy, and the φn(r)

obey time-independent coupled-channel equations. The last
expression in (5) represents the truncated ansatz used in
practical calculations.

Substitution of the solution ansatz (4) into the Schrödinger
equation (3) leads to a time-dependent eigenvalue problem:

HF (r, t)�(r, t) = EF�(r, t), (6)

where the Floquet Hamiltonian HF (r, t) is defined as

HF (r, t) = H(r, t) − i
∂

∂t
. (7)

In this work we assume that the external field is provided
by a linearly polarized monochromatic laser whose electric
field is aligned with the internuclear axis of the H+

2 ion, and
that the dipole approximation is valid. Then the interaction
VL(r, t) in length gauge takes the form

V lg
L (r, t) = Fz cos ωt, (8)

where F is the laser field strength. The length gauge is indeed
more appropriate for low-frequency fields [20], and we employ
this gauge for ω = 0.0428, 0.056 95, and 0.085 65 au in the
present work, which correspond to wavelengths λ = 1064,
800 and 532 nm, respectively.

For the solution of the Floquet (steady-state) Hamiltonian
(7), the time variable t is treated in analogy to a coordinate
variable, and the Schrödinger equation (6) is solved as for
the stationary states of the time-independent Schrödinger
equation. Once we find �(r, t) from the steady-state
Schrödinger equation (6), we obtain the solution �(r, t) to
the TDSE (3) via equation (4).

We choose prolate spheroidal coordinates to deal with the
H+

2 ion (as described in [20]), in which the Born–Oppenheimer
treatment (equation (2)) gives an analytic solution to the
Schrödinger equation [23–25].

The final time-independent coupled equations for the non-
Hermitian matrix problem in length gauge to be implemented
are

2
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Figure 1. The HHG rate for the lower state of H+
2 at internuclear separation R = 2 au, and λ = 532 nm: (a) I = 5 × 1013 W cm−2, 	15 rate

versus η(0) for various values of μc, namely 13.5 (diamonds), 14.5 (squares), 15.5 (plus signs) and 16.5 au (crosses); the green line shows
the value from Telnov and Chu [18]; (b) plot for more harmonics than shown in (a); here Nmax ≈ 15; (c) I = 1 × 1014 W cm−2, and
Nmax ≈ 17. The green line in (b), (c) connects the data of [18] while the red line connects the present data. The blue error bars are based on
the calculations with different μc. The vertical dashed lines indicate the semi-classical cutoff values Nmax.

[H0(μ, ν) − iη(0)W (μ)]φn(μ, ν) + 1
2 Fz[φn−1 + φn+1]

= (EF − nω)φn(μ, ν)

(n = 0,±1,±2, . . . ,±NF ). (9)

Details of the discretization of this equation and calculation of
the resonance parameter EF can be found in [20].

The field-free Hamiltonian (2) and the CAP W (μ) in
equation (9) are given as

H0 = −1

2

4

R2(μ2 − ν2)

[
∂

∂μ

[
(μ2 − 1)

∂

∂μ

]

+ ∂

∂ν

[
(1 − ν2)

∂

∂ν

]
+ μ2 − ν2

(μ2 − 1)(1 − ν2)

∂2

∂ϕ2

]

− 4μ

R(μ2 − ν2)
, (10)

and

W (μ) = (μ − μc)(μ − μc)
2, (11)

where  is the Heaviside step function, η is a small positive
parameter, and μc determines the ellipse outside of which the
CAP dampens the outgoing wave in the asymptotic region.

2.2. Calculation of HHG spectra from the non-Hermitian
Floquet approach

Once we have found the time-dependent Floquet wave function
�(r, t) via equation (4), we can compute the time-dependent
dipole moment along the internuclear axis, d(t), as

d(t) = 〈�(r, t)|z|�(r, t)〉. (12)

Following [18, 26], the nth-order harmonic generation (HG)
rates 	n (the number of photons with frequency nω emitted
per unit time) are calculated by the Larmor formula

�n = 4n3ω3

3c3
|dn|2, (13)

where c is the speed of light, and dn is the Fourier transform
of the time-dependent dipole moment (12) as

dn = 1

T

∫ T

0
dt exp(inωt) d(t). (14)

As shown by Telnov and Chu [18] in Floquet theory the HHG
rates are obtained to the same accuracy irrespective of whether
one uses the dipole operator (12) or the velocity or acceleration
forms.

3. Results and discussion

3.1. HHG rates for the equilibrium separation R = 2 au

We attempted first to obtain the HHG spectra previously
reported by Telnov and Chu [18]. In our grid representation we
have two main parameters, and the results for the HG spectra
appear to be sensitive to them, implicitly via the Floquet wave
function �(μ, ν, t). One of two (artificial) parameters which
control the wave function is μc, which determines the region
where the CAP starts. Another one is the absorbing strength
parameter η. Ideally, the results ought to be insensitive to these
two parameters. It is obvious that the value of μc should be
larger than the quiver radius of a free electron α0 = F/ω2 (in
atomic units), because the main contribution to the HG spectra
comes from the free electron driven back to its parent ion or
two-centre core.

In analogy to the η-trajectory in the calculation of the
resonance parameter E (0)

F in [27], we initially obtain the HHG
rate 	n for varying η(0). Within a certain range of the η(0)-
trajectory, namely where the complex eigenenergy value E (0)

F
stabilizes, the resonance wave function is accurate, and in turn,
it should yield accurate HHG spectra there.

In panel (a) of figure 1 we show the HHG rate 	15 versus
η(0) for the lower state of the H+

2 ion at the equilibrium
separation (R = 2 au) in the field of intensity I = 5 ×
1013 W cm−2 and wavelength λ = 532 nm. In panel (a) we
show results for 	15 for η(0) � 0.05 (at η(0) � 0.05 the
computation is inaccurate). We chose four different μc values,
in the range 13.5 � μc � 16.5 au, which are much larger than
α0 = 5.15 au. The bottom green line shows the result obtained
by Telnov and Chu [18] for comparison (the dependence on
the complex scaling parameter is not given in that work). Our
results for 	15 are higher by up to a factor of 2.5, as compared
to with the value 	15 = 4.17 × 10−22 au given in [18]. In
panel (b) we show the HHG spectrum. We note that for orders
n < 15 the agreement with the results of [18] is good and is
independent of the chosen value of μc. In all plots of the HHG
rate we do not show results for order n = 1, because they are
usually much higher. The cutoff position is around n = 15,
which is indeed consistent with our result. For each harmonic
order we use four different values of μc to compute 	n, and

3
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Figure 2. The same plot as shown in figures 1(b), (c) for λ = 532 nm, however the laser intensities are I = 2 × 1014 W cm−2 (a), and
I = 5 × 1014 W cm−2 (b). In (c) the same plot is shown as in (b), but the number of Floquet channels is chosen to be NF = 72 (diamonds),
82 (squares) and 86 (circles), respectively. The classical cutoff positions are around 19 (a), and 31 (b), (c) and are indicated by vertical
dashed lines.
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Figure 3. HHG rates for the lower (red) and upper (blue) states of the H+
2 ion at R = 5 au (a) and R = 10 au (c). Panel (b) shows the HHG

spectrum for the lower state (red) at R = 10 au to be compared with the result obtained in [8] (green). The number of Floquet channels is
chosen to be NF = 82 (magenta) and 86 (red), respectively. The laser field parameters are I = 1 × 1014 W cm−2 and λ = 1064 nm.

(a) (b)

Figure 4. Ionization rate (in fs−1) as a function of R for the lower
and upper states of H+

2 . Curves: present results, solid red for the
lower state, and dashed blue for the upper state; crosses: Chu et al
[28] (red) (a), and Bandrauk [8] (green) (b). The field parameters are
I = 1 × 1014 W cm−2 and λ = 1064 nm (a) and λ = 800 nm (b)
respectively.

use them to define an average value with standard deviation.
Panel (c) shows the same plot for the HHG rate for the doubled
intensity, 1 × 1014 W cm−2. The cutoff law is clearly obeyed
around n = 17 by both the present and previous [18] results.
As compared to [18] our HHG rates are higher above the cutoff
but also less certain.

In figure 2 data are shown for increased laser intensities.
In panel (a) of figure 2 in the HHG spectra the cutoff position
moves up to 19, but the calculated spectrum extends the plateau

to higher orders. Our result agrees well with that obtained by
Telnov and Chu [18]. In panel (b) of figure 2 we show the
same plot for I = 5 × 1014 W cm−2. In this case although
the general features of the obtained HHG spectrum follow
those of [18], it does show significant deviation at certain
harmonic orders, namely for n = 5, 11 and 27. To check
our answer carefully, we gradually increased the number of
Floquet channels, because the HHG rates at higher harmonic
orders require a higher number of photon couplings. In panel
(c) of figure 2 we display the same plot as shown in panel
(b), but the number of Floquet channels NF is 72, 82 and 86,
respectively. Thus we know that the results are converged at
NF = 86 in the HHG order range presented in our plots. The
data in figure 2(c) are based on a matrix diagonalization with
NF = 86, with the specified truncation imposed in equation
(4) when computing (12).

Next we continue with HHG rates while moving towards
the low-frequency limit. In figure 3 we show the rates for the
lower (red) and upper (blue) states for the H+

2 ion for laser
fields of I = 1 × 1014 W cm−2 and λ = 1064 nm. All HHG
calculations are carried out with η(0) = 0.25. Panel (a) shows
the spectrum at internuclear separation R = 5 au, while panels
(b), (c) demonstrate corresponding results at R = 10 au. Given
that ω = 0.0428 au, the cutoff positions given by the classical
formula (1) are found around n = 45 and n = 43 at R = 5 au
and R = 10 au, respectively, and are shown by vertical dashed
lines for the lower state in figure 3 (for the upper state, the
cutoff position is close to it, since both states have almost the
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Figure 5. Contour plots of | log �(r, t = 0, T )|2 for the lower (a), (b), (c) and upper (d), (e), (f) states of H+
2 at R = 2, 4, and 8 au,

respectively. The x- and z-axis are labelled in au, and note that the scales are different. The laser field parameters are I = 1 × 1014 W cm−2

and λ = 1064 nm.

same ionization potential at large internuclear separations).
As discussed by Bandrauk and co-workers in [7, 8], these
classical cutoff positions are referred to as the atomic plateau.
They argue that a first plateau region can be identified as a
molecular plateau: its cutoff occurs at harmonic order

nM = 2�R

ω
= 2d0F

ω
≈ RF

ω
, (15)

where �R is the Rabi frequency for driving transitions between
the 1σg and 1σu states and the transition dipole moment d0

grows towards R/2 with increasing R (for details cf [8]).
According to this model in which the two lowest states are
driven resonantly, since ω � ε1σu −ε1σg , the values of the cutoff
positions can be found at nM = 5 for R = 5 au, and nM = 11
for R = 10 au, respectively. These calculated values of nM can
be observed in the data given in figure 3. The harmonics for
n < nM are produced predominantly by the bound parts of the
wave function. One can interpret the molecular plateau process
as localized electron removal in one well, acceleration by the
laser field towards the other well followed by recombination.
Yu et al [9] have recently performed TDSE and Maxwell–
TDSE calculations to demonstrate the feasibility of attosecond
pulse generation in this HG regime.

Panel (b) of figure 3 shows the HHG spectrum calculated
by equation (14) for the lower state of the ion and its
comparison with that obtained in [8] (green). We note that the
agreement between the Floquet result and the calculation for
a finite 30-cycle pulse is excellent up to order 39. Beyond this
order the harmonics for the finite pulse with square envelope
continue to be strong, while the Floquet results fall off. The
comparison of NF = 82 and NF = 86 calculations indicates
that the present Floquet calculations for λ = 1064 nm are
converged.

3.2. Harmonic generation rates as a function of internuclear
separation R

In this subsection we present HG rates for moderate orders
n, i.e., in the molecular plateau region at the intensity
1 × 1014 W cm−2 as a function of internuclear separation R. In
figure 4 we show the ionization rates for the lower and upper
states of the ion for two wavelengths of the laser field, 1064 nm
and 800 nm.

In figure 5 we show the contour plots of the localized
probability density for the lower and upper states of the ion
for three internuclear separations. The states are quite distinct
for R = 2, 4 au, but acquire a very similar character due to
the resonant mixing at R = 8 au. Plots of Floquet Siegert-
state probability densities for atomic hydrogen were obtained
recently for similar laser fields [29]. In the present work the
use of a CAP suppresses the outgoing wave, and therefore
we cannot confirm the conclusions of [29] about the shift in
location where the ionized electron is produced. In terms of
large R the H+

2 ionization rates (figure 4) show structures which
may be caused by resonances with dressed excited Floquet
states as in the atomic limit [29].

Since the physical interpretation for the enhancement
of the ionization rates and its connection with the Floquet
probability density demonstrated in figures 4 and 5
respectively are discussed in [30–33] and later in [20, 27],
we do not repeat it here. Our goal is to demonstrate how the
enhancement of the ionization rate in certain R-regions affects
the HG rates within the region of the molecular plateau, i.e.,
for n � nM (15).

In figure 6 we show the rates 	n as functions of R for
the lower (red) and upper (dashed blue) states of the ion using
a common linear scale. As can be seen in figure 6(c), when
R varies from the equilibrium separation 2 to 12 au, the fifth
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Figure 6. Harmonic generation rates as functions of internuclear separation R for the lower (solid red) and upper (dashed blue) of the H+
2

ion. The harmonic order is shown on each plot. The laser field parameters are I = 1 × 1014 W cm−2 and λ = 1064 nm.
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Figure 7. The same plots shown as in figure 6, however for λ = 800 nm.

harmonic for the lower and upper states has very similar large
peaks around R ≈ 5 au, where the first enhancement of the
ionization rate (figure 4(a)) occurs. Note, however that the
ionization rate patterns for the two states are not as similar
as those of 	5. Observing 	7 and 	9 in panels (d), (e) we
find a shift in the peaks towards larger R. For the lower state
a large peak in the ionization rate appears around R ≈ 9 au
(figure 4(a)), and 	9 also displays a peak there (figure 6(e)).
Meanwhile, the upper-state 	9 rate deviates for R > 8 au,
somewhat in accord with its decrease in ionization rate.

The HG rates for higher orders of n (beyond n = 11)
become smaller, thus we do not show them here. Together
figures 4(a) and 6 demonstrate that the enhancement of
the ionization rate for the lower and upper states of the
hydrogen molecular ion can be linked to an enhancement
of the harmonic generation rates in certain R-ranges. This
happens for harmonic orders within the molecular plateau
region n < nM .

As a further demonstration of the correspondence we show
the HG rate as a function of R for λ = 800 nm in figure 7, while
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the ionization rates are given in figure 4(b). The upper state
shows a very prominent ionization peak around R = 8 au.

As can be observed from figure 7(b), 	3 displays strong
peaks around R ≈ 4 au in a region for both states, where
the ionization rates are not strong. This is particularly true
for the lower state. This behaviour, thus, must come from
bound-state populations [8]. However, a major peak can be
observed in 	7 around R ≈ 8 au (figure 7(d)) for the upper
state, where a strong enhancement of the ionization rate does
occur (figure 4(b)). A significant feature around R ≈ 8 au is
also visible in 	9 for the upper state (figure 7(e)).

Compared to the λ = 1064 au case figure 7(f) shows
a much weakened 	11 rate. This is a consequence of the
molecular cutoff law (15). Naively, one might think that a
reduced wavelength λ (increased ω) will simply push the cutoff
to higher R. However, at R > 10 au the ionization rates drop
(cf figure 4). One reason why the dynamics change at large R is
that the upper and lower states become nearly degenerate, i.e.,
ω � ε1σu −ε1σg , and the strong-coupling regime [8] is reached.

From the behaviour of the n < nM rates 	n shown in
figures 6, 7 it is obvious that the dipole moment equation (12)
is a complicated periodic function of time when R � 2 au. It
is no longer dominated by the fundamental frequency ω as is
usual for atomic HG spectra.

4. Conclusions

We have presented a non-Hermitian Floquet calculation of
HHG for the lowest two H+

2 eigenstates in monochromatic
strong laser fields using the length gauge. A pseudospectral
representation of the Hamiltonian was applied, and the CAP
method was implemented to avoid the calculation of an
oscillatory tail in the coupled-channel resonance wave function
and to get accurate resonance parameters. In this approach
even though we needed to solve a large non-Hermitian matrix
problem to get the solution for the TDSE, we avoided problems
that are associated with time-stepping algorithms, particularly
the accumulation of phase errors.

The results for the HHG rates for the lower state of H+
2 in

strong laser fields were compared with previous calculations in
the literature [8, 18]. The cutoff positions in the HHG spectra
were examined and compared with the classical cutoff formula
given in [4]. Good agreement was found for I � 1014 Wcm−2

and some deviations at higher intensities for high harmonic
orders.

In the region of the molecular plateau, n < nM , (cf
equation (15)), while considering separations R = 4–10 au
it is shown that the enhancement of the ionization rate for the
lower and upper states at R ≈ 8 au causes an enhancement
of the harmonic generation rate in the following way: 	5 for
both states and 	9 for the lower state of H+

2 in a field of
I = 1014 W cm−2 and λ = 1064 nm show peaks; similarly 	7

for the upper state of H+
2 in a field of I = 1014 W cm−2 and

λ = 800 nm displays peaks at Rc ≈ 8 au. The lower bound of
this enhanced HG region R = 4 au is characterized by near-
resonant coupling ω ≈ ε1σu − ε1σg. It is bounded at R ≈ 10 au
by the decrease in ionization rate (cf figure 4). On the other
hand, for λ = 800 nm 	3 dominates the HG spectra around

R ≈ 4 au for the upper and lower states which cannot be
associated with an enhanced ionization rate, but with strong
resonant coupling, as explained in [8].
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