spinning up disks

uniform circular motion:
\[\vec{r}(t) = R \cos \omega t \hat{i} + R \sin \omega t \hat{j} \]

or:
\[r = R \quad \text{or} \quad \vec{r}(t) = \omega t \]

\[\vec{r}(t) = \vec{r}_0 + \omega t \]

use the analogy to linear motion:
\[x(t) = x_0 + v_t \]

since \(r = R \) is fixed, we have one degree of freedom in this 2d motion.

Q: Constant-acceleration rotational motion:
\[\vec{r}(t) = \vec{r}_0 + \omega t + \frac{1}{2} \alpha t^2 \]

\[\vec{r}(t) = \vec{r}_0 + \omega t + \frac{1}{2} \alpha t^2 \]

\[\alpha = \frac{d\omega}{dt} \]

\[\alpha = \text{angular acc.} \]

\[o(t) = o_0 + \alpha t \]

A: yes, this works:
\[\vec{r}(t) = R \cos \theta(t) \hat{i} + R \sin \theta(t) \hat{j} \]

\[\vec{v}(t) = -R \dot{o} \sin \theta(t) \hat{i} + R \dot{\theta} \cos \theta(t) \hat{j} \]

\[\vec{a}(t) \text{ is no longer centripetal} \]

\[\vec{a}(t) = \vec{a}_{cp}(t) + \vec{a}_{spin up} \]

as before:
\[-R(\dot{\theta})^2 \cos \theta(t) \hat{i} - R(\dot{\theta})^2 \sin \theta(t) \hat{j} \]

more intuitively:
\[\vec{a}(t) = \vec{a}_{cp}(t) + \vec{a}_{spin up}(t) \]

\[\vec{a}(t) \text{ no longer points to the centre} \]

\[\vec{a}(t) = \vec{a}_{cp}(t) + \vec{a}_{spin up}(t) \]
What could be providing $\vec{a}_{\text{spin up}}$?

Take a light disk, a heavy mass m on the rim, attach a string + pull with tension \vec{T}

pulling the string with constant T sets m into accelerated motion on a circular path

- call $\vec{a}_{\text{spin up}} = \vec{a}_{\text{tangential}} = \vec{a}_t$

\[a_t = |\vec{a}_t| = \frac{dv}{dt} \quad v = \text{speed of } m \]

we want to know: how does the spin rate ω change with time: \[\omega'(t) = \alpha \] \text{ constant angular accel.}

\[\omega(t) = \omega_0 + \alpha t \]

Newton 2:

\[m a_t = T \]

\[m \frac{dv}{dt} = T \]

but \[\omega = \frac{v}{R} \]

\[\Rightarrow \omega' = \frac{v'}{R} ; v' = Rw' \]

\[\therefore m R \omega' = T \]

or \[m R \alpha = T \]

Angular acceleration: \[\alpha = \frac{T}{mR} \]

Given some tension force T \[\implies \begin{array}{c} \text{bigger mass} \rightarrow \text{less } \alpha \\ \text{bigger } R \rightarrow \text{less } \alpha \end{array} \]

It is harder to spin up a wheel where the mass is further away from the rotation axis!
Now generalize the wheel: \(m \) is at radius \(R \), but wheel \(\rightarrow \) spool (still massless), the string winds at a different (smaller) radius \(r \)

Invoke the Archimedes lever arm principle:
replace in the previous formula
\[
T \rightarrow \left(\frac{r}{R} \right) T
\]

\[
mR^2 \alpha = \left(\frac{r}{R} \right) T
\]

\[
mR^2 \alpha = rT
\]

Newton - 2: for rotation about a fixed axis
\[
\text{torque (magnitude)} \quad \frac{r}{L} \quad \text{angular acceleration at which force applies}
\]

Last step: \(I = mR^2 \) = point mass inertia can be summed to make up a solid body

\[
I = \sum \limits_{i} m_i R_i^2
\]

results in:

\[
\text{Disk: } I = \frac{1}{2} MR^2
\]

\[
\text{Sphere: } I = \frac{2}{5} MR^2
\]

\[
\text{generally: } I = \gamma MR^2
\]

\(\gamma \) size scale geometric factor