> restart; Digits:=14:
$>$ \# Solve the air drag problem. Free fall with a parachute.
$>$ \# Measure downward velocity as positive
$>$ N2law: $=\operatorname{diff}(v(t), t)=g-C / m * v(t)^{\wedge} 2$;

$$
\begin{equation*}
N 2 l a w:=\frac{\mathrm{d}}{\mathrm{~d} t} v(t)=g-\frac{C v(t)^{2}}{m} \tag{1}
\end{equation*}
$$

g:=10.; \# we work in SI to about 2 digits

$$
\begin{equation*}
g:=10 \tag{2}
\end{equation*}
$$

$>\mathrm{m}:=70$.; \# average person's mass (kg)

$$
\begin{equation*}
m:=70 \tag{3}
\end{equation*}
$$

$=\mathrm{CO}:=0.5 * \mathrm{rho} *$ A;

$$
\begin{equation*}
C 0:=0.5 \rho A \tag{4}
\end{equation*}
$$

$>\mathrm{A}:=25 ; \# 5$ by 5 meters is 25 square meters
$A:=25$
$>$ rho:=1.2; \# in kg/m^3, this is from Wiki, sea level at 20 degrees (will be less at higher altitudes)

$$
\begin{equation*}
\rho:=1.2 \tag{6}
\end{equation*}
$$

$>\mathrm{CO}$;

$$
\begin{equation*}
15.00 \tag{7}
\end{equation*}
$$

[> \# Unit of C? [C] = Accel * Mass / Velocity^2 = Mass/Length
[> \# Unit of C? [C] = Accel * Mass / Velocity^2 = Mass/Length
[$>$ \# formula: [rho*A] = (Mass/Volume) * Area $=$ Mass/Length
$\Gamma>\mathrm{C}:=\mathrm{CO}$; \#

$$
\begin{equation*}
C:=15.00 \tag{8}
\end{equation*}
$$

[$>$ sol:=dsolve(\{N2law,v(0)=0.\}); \# Maple can solve it sol:= $v(t)$

$$
\begin{equation*}
=\frac{10000000}{21428571428571} \sqrt{214285714285710} \tanh \left(\frac{1}{10000000} t \sqrt{214285714285710}\right) \tag{9}
\end{equation*}
$$

> V:=evalf(rhs(sol));

$$
\begin{equation*}
V:=6.8313005106399 \tanh (1.4638501094228 t) \tag{10}
\end{equation*}
$$

$>\underset{0(i n S I) ") ;}{p l o t h i c k n e s s=3, t i t l e=" F a l l}$ velocity vs time when $v(0)=$
Fall velocity vs time when $v(0)=0($ in SI)

- \# is this good enough to survive a fall? 6.8*3.6; \# in km/h - doable ? (with practice, yes)
\# It took 1-2 seconds to reach terminal velocity
\# Now allow free fall for a second, then the parachute opens?
\# How big will the acceleration be once the parachute kicks in?
[$>$ \# free fall for 1 second - initial set up for drag problem: [> v0:=g*1;

$$
\begin{equation*}
v 0:=10 . \tag{12}
\end{equation*}
$$

[$>$ \# when the parachute kicks in vo is $10 \mathrm{~m} / \mathrm{s}$.

$$
\begin{align*}
& \text { 「 }>\text { sol:=dsolve(\{N2law,v(0)=v0\}); \# Maple solves ! } \\
& \text { sol: }=v(t) \tag{13}\\
& =\frac{10000000}{21428571428571} \sqrt{214285714285710} \tanh \left(\frac{1}{214285714285710000000}\right. \\
& \text { (21428571428571 } t \\
& \left.+1000000 \sqrt{214285714285710} \operatorname{arctanh}\left(\frac{1}{10000000} \sqrt{214285714285710}\right)\right) \\
& \sqrt{214285714285710}) \\
& \text { [> V:=evalf(rhs(sol)); } \\
& V:=6.8313005106399 \tanh (1.4638501094228 t+0.83495951529394-1.5707963267949 \mathrm{I}) \\
& \text { [}>\text { plot }(\mathrm{V}, \mathrm{t}=0 \ldots 5 \text {, thickness=3,title="Fall velocity vs time when } \mathrm{v}(0)= \\
& 10 \text { (in SI)"); }
\end{align*}
$$

Fall velocity vs time when $v(0)=10($ in SI)

[$>$ \# The same terminal velocity is achieved!
[$>$ \# Get the accel. by derivative:
> a:=diff(V,t);
$a:=(10.000000000000+0 . \mathrm{I})(1-\tanh (1.4638501094228 t+0.83495951529394$
-1.5707963267949 I) $\left.{ }^{2}\right)$
[$>$ plot (a,t=0..2, thickness=3,title="Acceleration vs time when parachute opens (in SI)");

Acceleration vs time when parachute opens (in SI)

\# If this was realistic (immediate opening of parachute, ie, area A goes from 0 to full, then the parachutist would undergo a massive stretch: before time zero s/he accelerates with g=10 $\mathrm{m} / \mathrm{s}^{\wedge} 2$ downwards (positive direction by choice), and then in one instant the acceleration switches to the opposite, $11 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ in the upward direction! This would not be good for the body!

