PhysicsTutor ${ }^{(7)}$

Current and moving electron

Giambattista 19.65

Problem:

- A long straight wire carries a current of 50.0 A . An electron, traveling at $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ at a right angle toward the wire, is 5.0 cm from the wire. What force (magnitude and direction) acts on the electron?

$$
I=50 \mathrm{~A} \quad \int_{d=5.0 \mathrm{~cm}}^{\uparrow^{\vec{v}}} \quad v=1.0 \times 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Relevant ideas:

Relevant ideas:

- A long current-carrying wire is surrounded by a magnetic field whose strength drops as $1 / \mathrm{d}$.

$$
B=\frac{\mu_{0} I}{2 \pi d}
$$

$$
\begin{aligned}
& \text { strength of } \\
& B \text { falls } \\
& \text { off with }
\end{aligned}
$$ distanced

Spacing of field

lines grows with d.

Relevant ideas:

- A long current-carrying wire is surrounded by a magnetic field whose strength drops as $1 / \mathrm{d}$.
- The field lines are circles about the wire. Use the Right-Hand rule to find the direction of B.

Relevant ideas:

- A long current-carrying wire is surrounded by a magnetic field whose strength drops as $1 / \mathrm{d}$.
- The field lines are circles about the wire. Use the Right-Hand rule to find the direction of \mathbf{B}.
- The magnetic force on a moving charged particle is given by a cross product involving velocity \mathbf{v} and magnetic field vector \mathbf{B}. The charge sign of the particle is also important. RH rule $\vec{v} \times \vec{B}$ is to the left, but $q_{e^{-}}=-e<0$ flips sign: $\vec{F}_{m}=q \vec{v} \times \vec{B}$ is to the right.

Equations associated with ideas:

$$
\begin{aligned}
& B=\frac{\mu_{0} I}{2 \pi d} \\
& \vec{F}_{M}=q \vec{v} \times \vec{B} \\
& F_{M}=q v B \sin (\Varangle \vec{v}, \vec{B}) \leftarrow \operatorname{sas}_{\operatorname{sign}} \text { info. } \\
& \left|F_{M}\right|=|q v B \sin \alpha| \quad \alpha=\Varangle \vec{v}, \vec{B}
\end{aligned}
$$

Strategy

Strategy

- Determine the strength of the magnetic field at the electron's location.

Strategy

- Determine the strength of the magnetic field at the electron's location.
- State the orientation of the \mathbf{B} field at the electron's location.

Strategy

- Determine the strength of the magnetic field at the electron's location.
- State the orientation of the \mathbf{B} field at the electron's location.
- Figure out the direction of the magnetic force from the cross-product and sign, and state it.

Strategy

- Determine the strength of the magnetic field at the electron's location.
- State the orientation of the \mathbf{B} field at the electron's location.
- Figure out the direction of the magnetic force from the cross-product and ${ }^{9}$ sign, and state it.
- Calculate the magnitude of the magnetic force.

Solution

Solution
$B=\frac{\mu_{0} I}{2 \pi d}=\frac{4 \pi \cdot 10^{-7} \cdot 50.0}{2 \pi \cdot 0.05} \quad \frac{\mathrm{Tm}}{\mathrm{A}} \frac{\mathrm{A}}{\mathrm{m}}=2.0 \times 10^{-4} \mathrm{~T}$

Solution

- $B=\frac{\mu_{0} I}{2 \pi d}=\frac{4 \pi \cdot 10^{-7} \cdot 50.0}{2 \pi \cdot 0.05} \quad \frac{\mathrm{Tm}}{\mathrm{A}} \frac{\mathrm{A}}{\mathrm{m}}=2.0 \times 10^{-4} \mathrm{~T}$
- \vec{B} is into page; $\vec{V} \times \vec{B}$ to the left $\vec{F}_{M}=q \vec{v} \times \vec{B}$ to the right

Solution

- $B=\frac{\mu_{0} I}{2 \pi d}=\frac{4 \pi \cdot 10^{-7} \cdot 50.0}{2 \pi \cdot 0.05} \quad \frac{\mathrm{Tm}}{\mathrm{A}} \frac{\mathrm{A}}{\mathrm{m}}=2.0 \times 10^{-4} \mathrm{~T}$
- \vec{B} is into page; $\vec{V} \times \vec{B}$ to the left; $\vec{F}_{M}=9 \vec{v} \times \vec{B} \quad \begin{gathered}(9<0) \\ \text { to the right }\end{gathered}$
- $\alpha=\Varangle \vec{v}, \vec{B}=90^{\circ} \therefore\left|F_{M}\right|=|q v B|$

Solution

- $B=\frac{\mu_{0} I}{2 \pi d}=\frac{4 \pi \cdot 10^{-7} \cdot 50.0}{2 \pi \cdot 0.05} \quad \frac{\mathrm{Tm}}{A} \frac{A}{m}=2.0 \times 10^{-4} \mathrm{~T}$
- \vec{B} is into page; $\vec{v} \times \vec{B}=$ to the left; $\vec{F}_{M}=q \vec{v} \times \vec{B}=$ to the right

$$
\begin{aligned}
& \alpha=\Varangle \vec{v}, \vec{B}=90^{\circ} \therefore\left|F_{M}\right|=|q v B| \\
& \begin{aligned}
\left|F_{M}\right| & =1.60 \times 10^{-19} \cdot 1.0 \times 10^{7} \cdot 2.0 \times 10^{-4} \frac{\mathrm{CTm}}{\mathrm{~s}} \\
& =3.2 \times 10^{-16} \mathrm{~N}=0.32 \mathrm{fN}
\end{aligned}
\end{aligned}
$$

femto
\vec{F}_{M} is $3.2 \times 10^{-16} \mathrm{~N}$ parallel to the current. (to the right)

