PhysicsTutor ${ }^{(6)}$

Magnetic field

Giambattista 19.71

Problem:

- Two long straight parallel wires separated by 8.0 cm carry currents of equal magnitude but heading in opposite directions. The wires are shown perpendicular to the page plane (x, y). Point P is 2.0 cm from wire 1 , and the magnetic field at P is $1.0 \times 10^{-2} \mathrm{~T}$ along $-y$.
- Find the current in wire 1 and its direction.

Relevant ideas:

Relevant ideas:

- A long current-carrying wire is surrounded by a magnetic field whose strength drops as $1 / \mathrm{d}$.

lines grows with d.

Relevant ideas:

- A long current-carrying wire is surrounded by a magnetic field whose strength drops as $1 / \mathrm{d}$.
- The field lines are circles about the wire. Use the Right-Hand rule to find the direction of \mathbf{B}_{i} at P for wires $i=1,2$.

Relevant ideas:

- A long current-carrying wire is surrounded by a magnetic field whose strength drops as $1 / \mathrm{d}$.
- The field lines are circles about the wire. Use the Right-Hand rule to find the direction of \mathbf{B}_{i} at P for wires $i=1,2$. Do they add or subtract?
- The net magnetic field is caused by the closer current in wire 1, but also has a contribution from wire 2.

Equations associated with ideas:

$$
B=\frac{\mu_{0} I}{2 \pi d} ; \quad B_{1}=\frac{\mu_{0} I_{1}}{2 \pi d_{1}} ; \quad B_{2}=\frac{\mu_{0} I_{2}}{2 \pi d_{2}}
$$

counter-propagating currents at P_{1} / P_{2} : (anti-parallel)

$$
B_{\text {net }}=B_{1}+B_{2}
$$

a p

Fields would partially cancel if P was to the left of wire 1!

Strategy

Strategy

- Use the simple right-hand rule to figure out that the fields from wire 1 and wire 2 add at P.

$$
B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right)
$$

Strategy

- Use the simple right-hand rule to figure out that the fields from wire 1 and wire 2 add at P.
- The direction of the net magnetic field is along $-y$. This means current 1 is into the page, and current 2 is out of the page.
opposite to what was assumed for the figure.

Strategy

- Use the simple right-hand rule to figure out that the fields from wire 1 and wire 2 add at P.
- The direction of the net magnetic field is along $-y$. This means current 1 is into the page, and current 2 is out of the page.
- In the formula for the net field isolate the current strength I, and solve for it.

Strategy

- Use the simple right-hand rule to figure out that the fields from wire 1 and wire 2 add at P.
- The direction of the net magnetic field is along $-y$. This means current 1 is into the page, and current 2 is out of the page.
- In the formula for the net field isolate the current strength I, and solve for it.
- Q: what if P was to the left of wire 1 ?

Solution

Solution

$$
\text { - } B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right) \therefore B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{d_{1} d_{2}}{d_{1}+d_{2}}\right)
$$

Solution
$B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right) \therefore B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{d_{1}+d_{2}}{d_{i} d_{2}}\right)$
$\therefore I=\frac{2 \pi}{\mu_{0}} B_{\text {net }} \frac{d_{1} d_{2}}{d_{1}+d_{2}}=\frac{2 \pi \cdot 1.0 \times 10^{-2} \cdot 2.0 \cdot 6.0 \times 10^{-4}}{4 \pi \cdot 10^{-7} \cdot 8.0 \times 10^{-2}} \mathrm{~A}$

Solution
$B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right) \therefore B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{d_{1}+d_{2}}{d_{1} \cdot d_{2}}\right)$
$\therefore I=\frac{2 \pi}{\mu_{0}} B_{\text {net }} \frac{d_{1} d_{2}}{d_{1}+d_{2}}=\frac{2 \pi \cdot 1.0 \times 10^{-2} \cdot 2.0 \cdot 6.0 \times 10^{-4}}{4 \pi \cdot 10^{-7} \cdot 8.0 \times 10^{-2}} \mathrm{~A}$

- $I=0.75 \cdot 10^{3} \mathrm{~A}=750 \mathrm{~A}$

Solution
$B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right) \therefore B_{\text {net }}=\frac{\mu_{0}}{2 \pi} I\left(\frac{d_{1}+d_{2}}{d_{1} \cdot d_{2}}\right)$
$\therefore I=\frac{2 \pi}{\mu_{0}} B_{\text {net }} \frac{d_{1} d_{2}}{d_{1}+d_{2}}=\frac{2 \pi \cdot 1.0 \times 10^{-2} \cdot 2.0 \cdot 6.0 \times 10^{-4}}{4 \pi \cdot 10^{-7} \cdot 8.0 \times 10^{-2}} \mathrm{~A}$

- $I=0.75 \cdot 10^{3} \mathrm{~A}=750 \mathrm{~A}$
- current 1 is into the page

