PhysicsTutor ${ }^{(\cdots)}$

Magnetic field and electron motion

Giambattista 19.112

Problem:

- An electron moves in a circle of radius R in a uniform field \mathbf{B}, which is into the page.
- Does the electron move clockwise or counterclockwise?
- Derive an expression for the orbit time.

$$
\begin{aligned}
& \text { uniform } \vec{B} \\
& \text { into the page } \\
& \text { electron orbit } \\
& \text { cw or } \mathrm{ccw}^{\prime} \text { ? }
\end{aligned}
$$

Relevant ideas:

Relevant ideas:

- The magnetic force provides the centripetal acceleration.

$$
\frac{m v^{2}}{R}=F_{M}
$$

Relevant ideas:

- The magnetic force provides the centripetal acceleration.
- The orientation of the orbit follows from the evaluation of the cross-product rule: \mathbf{v} cross \mathbf{B}, multiplied by the negative electron charge.

\therefore yes, clockwise works!

Relevant ideas:

- The magnetic force provides the centripetal acceleration.
- The orientation of the orbit follows from the evaluation of the cross-product rule: \mathbf{v} cross \mathbf{B}, multiplied by the negative electron charge.
- Linear speed v and circumference determine the orbit time.

$$
\begin{aligned}
v=\frac{2 \pi R}{T} & \leftarrow \text { one revolution } \\
& \leftarrow \text { period }=\text { orbit time }
\end{aligned}
$$

Equations associated with ideas:

$$
\begin{array}{ll}
\vec{F}_{M}=q \vec{v} \times \vec{B}, & \left|\vec{F}_{M}\right|=|q v B \sin (\Varangle \vec{v}, \vec{B})| \\
a_{c p}=\frac{v^{2}}{R} & v=\frac{2 \pi R}{T} \quad \therefore T=\frac{2 \pi R}{v} \\
\sin (\Varangle \vec{v}, \vec{B})=1 \therefore & \therefore F_{M}|=19| v B=e v B
\end{array}
$$

Strategy

Strategy

- Vectors \mathbf{v} and \mathbf{B} are at a right angle. Thus, the magnitude of the magnetic force $q v B$ is equal to the centripetal $m a=m v^{2} / R$.

Strategy

- Vectors \mathbf{v} and \mathbf{B} are at a right angle. Thus, the magnitude of the magnetic force $q v B$ is equal to the centripetal $m a=m v^{2} / R$.
- The time for one orbit: $T=2 \pi R / v$. The speed follows from the condition derived above.

Strategy

- Vectors \mathbf{v} and \mathbf{B} are at a right angle. Thus, the magnitude of the magnetic force $q v B$ is equal to the centripetal $m a=m v^{2} / R$.
- The time for one orbit: $T=2 \pi R / v$. The speed follows from the condition derived above.
- The orientation for traversing the orbit: use the right-hand rule for the direction of $\mathbf{v} \times \mathbf{B}$, then reverse the sign ($q=-e$) for an electron.

Solution

Solution
$\frac{m_{0} v^{x}}{R}=\left|F_{M}\right|=e \not \partial B \quad \therefore v=\frac{e B R}{m_{e}}$

Solution

- $\frac{m_{e} v^{x}}{R}=\left|F_{M}\right|=e \not x^{6} B \quad \therefore \quad v=\frac{e B R}{m_{e}}$
- $T=\frac{2 \pi R}{v}=\frac{2 \pi R m_{e}}{e B R X}=\frac{2 \pi m_{e}}{e B}$

Solution
$\frac{m v^{x}}{R}=\left|F_{M}\right|=e \not \nu^{2} B \quad \therefore v=\frac{e B R}{m_{e}}$
$T=\frac{2 \pi R}{v}=\frac{2 \pi R m_{e}}{e B R}=\frac{2 \pi m_{e}}{e B}$
Orientation of the orbit: "trial-and-error" method.

Solution

- $\left.\frac{m_{e} v^{x}}{R}=\left|F_{M}\right|=e \not\right)^{\prime} B \quad \therefore v=\frac{e B R}{m_{e}}$
- $T=\frac{2 \pi R}{v}=\frac{2 \pi R m_{e}}{e B R}=\frac{2 \pi m_{e}}{e B}$

Orientation of the orbit: "trial-and-error" method.
Assume an orientation (e.g., (W), with the direction of \vec{v} evaluate $q \vec{v} \times \vec{B}$ orientation ($q=-e<0$ for e^{-}), check whether $\vec{F}_{M}=m \vec{a}_{c p}$ is consistent with assumption. \rightarrow accept and confirm.

