PhysicsTutor ${ }^{(0)}$

Magnetic force on a rectangular loop

Problem:

- A 20 cm by 30 cm rectangular loop of wire carries 1.0 A of current clockwise around the loop and sits in a magnetic field \mathbf{B}.
- A) Find the magnetic force on each side of the loop if B is out of the page and $B=2.5 \mathrm{~T}$.
- B) What is the net force on the loop?

Relevant ideas:

Relevant ideas:

- An electric current corresponds to charged particles moving with some velocity. Thus, the magnetic force from a B field acts on it.

Relevant ideas:

- An electric current corresponds to charged particles moving with some velocity. Thus, the magnetic force from a \mathbf{B} field acts on it.
- The cross-product right-hand rule determines the direction of the force. Use the current convention of positive charge moving. \vec{L}_{1}

$$
\vec{F}_{M}^{(i)}=I \vec{L}_{i} \times \vec{B}
$$

Relevant ideas:

- An electric current corresponds to charged particles moving with some velocity. Thus, the magnetic force from a \mathbf{B} field acts on it.
- The cross-product right-hand rule determines the direction of the force. Use the current convention of positive charge moving.
- The loop is rigid. Opposite forces acting on it will cancel. Watch out for the net force.

Equations associated with ideas:

$$
\hat{\gamma}{\underset{\imath}{\imath}}_{\vec{i}}
$$

$$
\vec{F}_{M}^{(i)}=I \vec{L}_{i} \times \vec{B}
$$

$$
\vec{L}_{1}=0.3 \mathrm{~m} \hat{\imath}
$$

$$
\vec{B}=B \hat{k}
$$

$$
\hat{\imath} \times \hat{k}=-\hat{\jmath} \quad \text { Ry rule }
$$

$$
\vec{F}_{\text {net }}=\sum \vec{F}_{M}^{(i)}
$$

Strategy

Strategy

- Use the RH rule for each of the four straight segments to find the direction of the magnetic force on them.

$$
\begin{aligned}
& \vec{F}_{M}^{(i)}=I \vec{L}_{i} \times \vec{B} \\
& \vec{L}_{2}=-0.2 m \hat{\jmath} \\
& \vec{B}=B \hat{R} \\
& \hat{\jmath} \times \hat{R}=\hat{\imath} \text { by Rule }
\end{aligned}
$$

$\hat{\gamma}$

Strategy

- Use the RH rule for each of the four straight segments to find the direction of the magnetic force on them.
- Calculate the strength of the forces.

Strategy

- Use the RH rule for each of the four straight segments to find the direction of the magnetic force on them.
- Calculate the strength of the forces.
- Add the forces vectorially to determine the net force on the loop.

Solution

$$
\begin{aligned}
& \hat{k} \xrightarrow[\imath]{\hat{\jmath}} \text { Solution } \\
& \bullet \overrightarrow{L_{1}}: \vec{F}_{M}^{(1)}=1.0 \mathrm{~A} \cdot 0.3 \mathrm{~m} \hat{\imath} \times 2.5 \mathrm{~T} \hat{k}=0.75 \mathrm{~N}(-\hat{\gamma})
\end{aligned}
$$

Solution

- $\vec{L}_{1}: \vec{F}_{M}^{(1)}=1.0 \mathrm{~A} \cdot 0.3 \mathrm{~m} \hat{\imath} \times 2.5 \mathrm{~T} \hat{k}=0.75 \mathrm{~N}(-\hat{\jmath})$
- $\vec{L}_{3}: \vec{L}_{3}=-\vec{L}_{1} \therefore \vec{F}_{M}^{(3)}=-\vec{F}_{M}^{(1)}=0.75 \mathrm{~N} \hat{\jmath}$

Solution

- $\vec{L}_{1}: \vec{F}_{M}^{(1)}=1.0 \mathrm{~A} \cdot 0.3 \mathrm{~m} \hat{\imath} \times 2.5 T \hat{k}=0.75 \mathrm{~N}(-\hat{\gamma})$
$\vec{L}_{3}: \vec{L}_{3}=-\vec{L}_{1} \quad \therefore \quad \vec{F}_{M}^{(3)}=-\vec{F}_{M}^{(1)}=0.75 \mathrm{~N} \hat{\jmath}$
- $\vec{L}_{2}: \vec{F}_{M}^{(2)}=1.0 \mathrm{~A} \cdot 0.2 \mathrm{~m}(-\hat{\jmath}) \times 2.5 T \hat{k}=0.50 \mathrm{~N}(-\hat{\imath})$

Solution

- $\vec{L}_{1}: \vec{F}_{M}^{(1)}=1.0 \mathrm{~A} \cdot 0.3 \mathrm{~m} \hat{\imath} \times 2.5 \mathrm{~T} \hat{k}=0.75 \mathrm{~N}(-\hat{\jmath})$
$\vec{L}_{3}: \quad \vec{L}_{3}=-\vec{L}_{1} \quad \therefore \quad \vec{F}_{M}^{(3)}=-\vec{F}_{M}^{(1)}=0.75 \mathrm{~N} \hat{\jmath}$
$\vec{L}_{2}: \vec{F}_{M}^{(2)}=1.0 \mathrm{~A} \cdot 0.2 \mathrm{~m}(-\hat{\jmath}) \times 2.5 T \hat{k}=0.50 \mathrm{~N}(-\hat{\imath})$

$$
\frac{\vec{L}_{4}: \vec{L}_{4}=-\vec{L}_{2} \therefore \vec{F}_{M}^{(4)}=-\vec{F}_{M}^{(2)}=+0.50 \mathrm{~N} \hat{L}}{\vec{F}_{\text {net }}=\sum \vec{F}_{M}^{(i)}=0 . \quad \text { not force } .}
$$

Note: the current loop has a magnetic field $\vec{B}_{l o 0 p}$ into the page \vec{B} is counteraligned with \vec{B} For the orientation shown it is $\vec{B}_{\text {loop }}$ is counteraligned with \vec{B} torque-free, but unstable antiparallel The loop is not pushed $\sim \hat{k}$, since \vec{B} is uniform.

