PhysicsTutor ${ }^{\text {(ax) }}$

Capacitor

Giambattista 17.54

Problem:

- A parallel-plate capacitor with $C=2.2 \mu \mathrm{~F}$ has a plate separation of 1.0 mm .
- A) How much potential difference will the capacitor take before dielectric breakdown of air (critical field: $\mathrm{E}_{\mathrm{br}}=3 \times 10^{6} \mathrm{~V} / \mathrm{m}$)?
- B) What is the magnitude of the greatest charge the capacitor can store before breakdown?

Relevant ideas:

Relevant ideas:

- Electric potential difference across cap. plates and E field inside related by separation d.

$$
\Delta V_{c}=E d
$$

Relevant ideas:

- Electric potential difference across cap. plates and E field inside related by separation d.
- Maximum allowed field before breakdown then implies maximum voltage for given d.

$$
\Delta V_{b r}=E_{b r} d
$$

Relevant ideas:

- Electric potential difference across cap. plates and E field inside related by separation d.
- Maximum allowed field before breakdown then implies maximum voltage for given d.
- Charge on the plates and voltage across plates are related. Proportionality is controlled by the capacitance C, which is given.

$$
c \Delta V_{c}=Q
$$

Equations associated with ideas:

$$
\begin{array}{lc}
\Delta V_{c}=E d & \Delta V_{b r}=E_{b r} d \\
C \Delta V_{c}=Q & \frac{\perp_{+Q}}{T^{-Q}} d \uparrow \frac{(\psi \psi \psi \psi \psi \psi}{\mid-Q} \vec{E}
\end{array}
$$

Strategy

Strategy

- Use the voltage (=potential difference) to field strength relation to obtain the breakdown voltage for this capacitor.

Strategy

- Use the voltage (=potential difference) to field strength relation to obtain the breakdown voltage for this capacitor.
- Using the known capacitance C relate the breakdown voltage to charge Q on the plates.

Strategy

- Use the voltage (=potential difference) to field strength relation to obtain the breakdown voltage for this capacitor.
- Using the known capacitance C relate the breakdown voltage to charge Q on the plates.
- This is the maximum charge one can store on the plates (under breakdown the charge equilibrates).

Solution

Solution

- $\Delta V_{b r}=E_{b r} d=3 \times 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}} \cdot 10^{-3} \mathrm{~m}=3,000 \mathrm{~V}$

Solution

- $\Delta V_{b r}=E_{b r} d=3 \times 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}} \cdot 10^{-3} \mathrm{~m}=3,000 \mathrm{~V}$
- $Q=C \Delta V \quad \therefore \quad Q_{\max }=C \Delta V_{b r}$

Solution

- $\Delta V_{b r}=E_{b r} d=3 \times 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}} \cdot 10^{-3} \mathrm{~m}=3,000 \mathrm{~V}$
- $Q=C \Delta V \quad \therefore \quad Q_{\max }=C \Delta V_{\text {br }}$
- $Q_{\text {max }}=2.2 \times 10^{-6} \mathrm{~F} \cdot 3.0 \times 10^{3} \mathrm{~V}=6.6 \mathrm{mC}$

Solution

- $\Delta V_{b r}=E_{b r} d=3 \times 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}} \cdot 10^{-3} \mathrm{~m}=3,000 \mathrm{~V}$
$Q=C \Delta V \quad \therefore \quad Q_{\max }=C \Delta V_{\text {br }}$
$Q_{\text {max }}=2.2 \times 10^{-6} \mathrm{~F} \cdot 3.0 \times 10^{3} \mathrm{~V}=6.6 \mathrm{mC}$
When $Q_{t}=6.6 \mathrm{mC}$ and $Q_{-}=-6.6 \mathrm{mC}$ "face each other" across the 1 mm gap in this (huge-plate)
set-up, some elections get ripped from the surface of the neg. plate and are accelerated strongly towards the pos. plate \rightarrow they ionize air molecules and a charge avalanche sets in.

