PhysicsTutor

Capacitor and electron motion

Giambattista 17.63

Problem:

- A tiny hole is made in the center of the plates of a capacitor allowing a beam of electrons to pass through. If 40.0 V are applied across the plates, and electrons enter through the hole of the negative plate with a speed of 2.50×10^{6} m / s, what is the speed of the electrons when they emerge out of the hole in the positively charged plate?

Relevant ideas:

Relevant ideas:

- Energy conservation should be used, as we cannot determine the electric field (without knowledge of the plate separation).

$$
\begin{aligned}
& \frac{1}{2} m v_{i}^{2}+P E_{i}=\frac{1}{2} m v_{f}^{2}+P E_{f} \\
\therefore \quad & \frac{1}{2} m v_{f}^{2}=\frac{1}{2} m v_{i}^{2}+\left(P E_{i}-P E_{f}\right)
\end{aligned}
$$

Relevant ideas:

- Energy conservation should be used, as we cannot determine the electric field (without knowledge of the plate separation).
- An electron gains an energy of e ΔV as it crosses the plate separation. The electric PE is converted into kinetic energy KE.

$$
\begin{array}{r}
\left|P E_{f}-P E_{i}\right|= \\
=1-e \Delta V|=|e \Delta V| \\
\uparrow=-e \text { for electron } \\
e=1.60 \times 10^{-19} \mathrm{C}
\end{array}
$$

Relevant ideas:

- Energy conservation should be used, as we cannot determine the electric field (without knowledge of the plate separation).
- An electron gains an energy of e ΔV as it crosses the plate separation. The electric PE is converted into kinetic energy KE.
- Be careful with the sign: the electron is accelerated, as it enters at the negative plate.

$$
K E_{f}>K E_{i}
$$

Equations associated with ideas:

$$
\begin{aligned}
& P E_{f}-P E_{i}=q \Delta V \quad K E=\frac{1}{2} m v^{2} \\
& K E_{f}+P E_{f}=K E_{i}+P E_{i} \quad \text { conservation } \\
& \text { of energy }
\end{aligned}
$$

Strategy

Strategy

- Calculate the energy gained by the electron: potential difference times electron charge.

Strategy

- Calculate the energy gained by the electron: potential difference times electron charge.
- Evaluate in SI, calculate the initial kinetic energy from the electron speed and mass, and add to obtain the total energy for the electron at the positive plate.

Strategy

- Calculate the energy gained by the electron: potential difference times electron charge.
- Evaluate in SI, calculate the initial kinetic energy from the electron speed and mass, and add to obtain the total energy for the electron at the positive plate.
- Calculate the final electron speed from the total energy.

Solution

Solution

- $\triangle P E=q \Delta V=-e \Delta V=-1.60 \times 10^{-19} \cdot 40.0 \mathrm{Ch} \mathrm{CV} \quad \begin{aligned} & \mathrm{CV} \\ & =\mathrm{ws} \\ & \mathrm{J}\end{aligned}$

Solution

- $\Delta P E=q \Delta V=-e \Delta V=-1.60 \times 10^{-19} \cdot 40.0 \stackrel{n}{\mathrm{C}} \mathrm{C} \mathrm{V} \quad \begin{aligned} & \mathrm{V} \\ & =\mathrm{ws}_{\mathrm{s}} \\ & =\mathrm{J}\end{aligned}$
- $\triangle K E+\triangle P E=0 \therefore \quad \triangle K E=-\triangle P E=6.40 \times 10^{-18} \mathrm{~J}$

Solution

- $\Delta P E=q \Delta V=-e \Delta V=-1.60 \times 10^{-19} \cdot 40.0{ }^{n} \mathrm{CN} \mathrm{V}$ As $\}=\mathrm{w}_{\mathrm{s}}$
- $\triangle K E+\triangle P E=0 \therefore \quad \triangle K E=-\triangle P E=6.40 \times 10^{-18} \mathrm{~J}$
- $K E_{i}=\frac{1}{2} m_{e} v_{i}^{2}=0.50 \cdot 9.11 \times 10^{-31} \cdot(2.50)^{2} \times 10^{12} \mathrm{~J}=2.847 \times 10^{-18} \mathrm{~J}$

Solution

- $\Delta P E=q \Delta V=-e \Delta V=-1.60 \times 10^{-19} \cdot 40.0{ }^{\text {n }} \mathrm{CL} \mathrm{V} \quad \begin{aligned} & \mathrm{As} \\ & \mathrm{CW} \\ & =\mathrm{Js}\end{aligned}$
- $\triangle K E+\triangle P E=0 \therefore \quad \triangle K E=-\triangle P E=6.40 \times 10^{-18} \mathrm{~J}$
- $K E_{i}=\frac{1}{2} m_{e} v_{i}^{2}=0.50 \cdot 9.11 \times 10^{-31} \cdot(2.50)^{2} \times 10^{12} \mathrm{~J}=2.847 \times 10^{-18} \mathrm{~J}$
$0 K E_{f}=9.247 \times 10^{-18} \mathrm{~J} \therefore v_{f}=\sqrt{2 \mathrm{~m}_{e}^{-1} K E_{f}}=4.51 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}$
The election almost doubles its speed.
Note: given a potential difference, the plate separation, and electric field strength don't matter. For a small separation, i.e., strong field: change in KE happens over a shorter distance.

