PhysicsTutor

Capacitor and Energy Giambattista 17.75

Problem:

- A parallel-plate capacitor holds a charge of 5.5×10⁻⁷ C on its plates (positive on one, negative on the other). The distance between the plates is increased by 50%, while the charge on the plates stays the same.
- What happens to the energy stored in the capacitor?

• Energy stored in a capacitor: $PE = Q^2/(2C)$

Note: Using
$$\Delta V_c = \frac{Q}{C}$$
 this can also be written
as $PE = \frac{(C \Delta V_c)^2}{2C} = \frac{C}{2} \Delta V_c^2$, but we
are given Q , which is held constant.

- Energy stored in a capacitor: $PE = Q^2/(2C)$
- Capacitance *C* changes with the plate separation. Smaller distance = larger capacitance.

С

$$C \sim H \quad (A=area \quad of plates)$$

$$C \sim \frac{1}{d} \quad (d = plate \; separation)$$

$$C = \varepsilon_0 \frac{A}{d} \quad material \; property \; of \; capacitor$$

$$c = \varepsilon_0 \frac{A}{d} \quad material \; property \; of \; capacitor$$

$$c \ change \; \varepsilon_0 : \; insert \; dielectric \; instead$$

$$r \ change \; area \; of \; overlap \; \rightarrow$$

$$r \ rot \; very \; practical , has to be small \quad transle \; capacitor \; 5$$

- Energy stored in a capacitor: $PE = Q^2/(2C)$
- Capacitance *C* changes with the plate separation. Smaller distance = larger capacitance.
- Plate distance *d* is increased, i.e., capacitance is reduced. PE increases in proportion with *d*, since the charge *Q* remains the same.

Equations associated with ideas: $PE = \frac{1}{2c} Q^2$ $C = \varepsilon_o \frac{A}{d}$ $\Delta V_c = \frac{Q}{c}$ < not needed here, but we may want to know $PE = \frac{G}{2} (\Delta V_c)^2 \qquad \begin{array}{c} R \\ \Delta V_c \\ \alpha \beta \end{array} \qquad \begin{array}{c} \Delta V_c \\ \end{array} \qquad \begin{array}{c}$ compensated by decrease in C.

• Relate the change in capacitance C_2/C_1 after the distance change $d_2/d_1=3/2$.

- Relate the change in capacitance C_2/C_1 after the distance change $d_2/d_1=3/2$.
- Use the ratio of the capacitances C_2/C_1 to express the potential energy change PE_2/PE_1 .

- Relate the change in capacitance C_2/C_1 after the distance change $d_2/d_1=3/2$.
- Use the ratio of the capacitances C_2/C_1 to express the potential energy change PE_2/PE_1 .
- Additional question: what happens to the voltage drop across the plates, ΔV_c ?
- It also increases linearly, since $\Delta V_C = Q/C$.

Solution

			So	olution	Ì	•	
•	d2/d1	= 3/2	(50%	increase).		A d_2 A d_1	= d1 d2
•	•••	$\frac{C_2}{C_1} =$	23	$\frac{PE_2}{PE_1} =$	$\frac{Q^2/2C_2}{Q^2/2C_1}$		= 32

			S	olut	ion			
•	d2/d1	= 3/2	(50%	increas	e).		$\varepsilon_{0} \frac{A}{d_{2}}$ $\varepsilon_{0} \frac{A}{d_{1}}$	$= \frac{d_1}{d_2}$
•		C2 =	2133	· PE2		$\frac{Q^2/2c}{Q^2/2c}$		$=\frac{3}{2}$
•	PE	increa	ises by	50%	(pro	p. to	increase	in d)

	Solution
•	$d_{2}/d_{1} = \frac{3}{2}$ (50% increase). $\frac{C_{2}}{C_{1}} = \frac{\varepsilon_{0}\frac{H}{d_{2}}}{\varepsilon_{0}\frac{H}{d_{1}}} = \frac{d_{1}}{d_{2}}$
•	$\therefore \frac{C_2}{C_1} = \frac{2}{3} \qquad \therefore \frac{PE_2}{PE_1} = \frac{\frac{Q^2}{2C_2}}{\frac{Q^2}{2C_1}} = \frac{C_1}{C_2} = \frac{3}{2}$
•	PE increases by 50% (prop. to increase in d)
•	Q: Who provides the additional energy?
	Mechanical work is required to pull the plates apart $-t$ the $\pm Q/-Q$ charged plates attract each other.