PhysicsTutor ${ }^{(6)}$

Capacitor and Energy

Giambattista 17.75

Problem:

- A parallel-plate capacitor holds a charge of $5.5 \times 10^{-7} \mathrm{C}$ on its plates (positive on one, negative on the other). The distance between the plates is increased by 50%, while the charge on the plates stays the same.
- What happens to the energy stored in the capacitor?

Relevant ideas:

Relevant ideas:

- Energy stored in a capacitor: $P E=Q^{2} /(2 C)$

Note: using $\Delta V_{c}=\frac{Q}{C}$ this can also be written as $P E=\frac{\left(C \Delta V_{c}\right)^{2}}{2 C}=\frac{C}{2} \Delta V_{c}^{2}$, but we are given Q, which is held constant.

Relevant ideas:

- Energy stored in a capacitor: $P E=Q^{2} /(2 C)$
- Capacitance C changes with the plate separation. Smaller distance = larger capacitance.

Relevant ideas:

- Energy stored in a capacitor: $P E=Q^{2} /(2 C)$
- Capacitance C changes with the plate separation. Smaller distance = larger capacitance.
- Plate distance d is increased, i.e., capacitance is reduced. PE increases in proportion with d, since the charge Q remains the same.
$C \sim \frac{1}{d}$

$$
P E \sim \frac{1}{C}
$$

$$
P E \sim d
$$

Equations associated with ideas:

$$
P E=\frac{1}{2 C} Q^{2} \quad C=\varepsilon_{0} \frac{A}{d}
$$

$\Delta V_{C}=\frac{Q}{C} \leftarrow$ not needed here, but we may want to know R
$P E=\frac{C}{2}\left(\Delta V_{C}\right)^{2} \quad \Delta V_{C}$ will change like $P E$, as $Q=$ const, C decreases R quadratic increase in $\left(\Delta V_{c}\right)^{2}$ is compensated by decrease in C.

Strategy

Strategy

- Relate the change in capacitance C_{2} / C_{1} after the distance change $d_{2} / d_{1}=3 / 2$.

Strategy

- Relate the change in capacitance C_{2} / C_{1} after the distance change $d_{2} / d_{1}=3 / 2$.
- Use the ratio of the capacitances C_{2} / C_{1} to express the potential energy change $\mathrm{PE}_{2} / \mathrm{PE}_{1}$.

Strategy

- Relate the change in capacitance C_{2} / C_{1} after the distance change $d_{2} / d_{1}=3 / 2$.
- Use the ratio of the capacitances C_{2} / C_{1} to express the potential energy change $\mathrm{PE}_{2} / \mathrm{PE}_{1}$.
- Additional question: what happens to the voltage drop across the plates, ΔV_{c} ?
- It also increases linearly, since $\Delta V_{C}=Q / C$.

Solution

Solution
$d_{2} / d_{1}=3 / 2 \quad(50 \%$ increase $) . \quad \frac{C_{2}}{C_{1}}=\frac{\varepsilon_{0} \frac{A}{d_{2}}}{\varepsilon_{0} \frac{A}{d_{1}}}=\frac{d_{1}}{d_{2}}$

Solution
$d_{2} / d_{1}=3 / 2 \quad(50 \%$ increase $) . \quad \frac{C_{2}}{C_{1}}=\frac{\varepsilon_{0} \frac{A}{d_{2}}}{\varepsilon_{0} \frac{A}{d_{1}}}=\frac{d_{1}}{d_{2}}$

$$
\therefore \frac{C_{2}}{C_{1}}=\frac{2}{3} \quad \therefore \quad \frac{P E_{2}}{P E_{1}}=\frac{Q^{2} / 2 C_{2}}{Q^{2} / 2 C_{1}}=\frac{C_{1}}{C_{2}}=\frac{3}{2}
$$

Solution
$d_{2}=\frac{3 / 2}{d_{1}} \quad(50 \%$ increase $) . \quad \frac{C_{2}}{C_{1}}=\frac{\varepsilon_{0} \frac{A}{d_{2}}}{\varepsilon_{0} \frac{A}{d_{1}}}=\frac{d_{1}}{d_{2}}$
$\therefore \frac{C_{2}}{C_{1}}=\frac{2}{3} \quad \therefore \frac{P E_{2}}{P E_{1}}=\frac{Q^{2} / 2 C_{2}}{Q^{2} / 2 C_{1}}=\frac{C_{1}}{C_{2}}=\frac{3}{2}$

- PE increases by 50% (prop. to increase in d)

Solution

- $d_{2} / d_{1}=3 / 2 \quad(50 \%$ increase $) . \quad \frac{C_{2}}{C_{1}}=\frac{\varepsilon_{0} \frac{A}{d_{2}}}{\varepsilon_{0} \frac{A}{d_{1}}}=\frac{d_{1}}{d_{2}}$ $\therefore \frac{C_{2}}{C_{1}}=\frac{2}{3} \quad \therefore \frac{P E_{2}}{P E_{1}}=\frac{Q^{2} / 2 C_{2}}{Q^{2} / 2 C_{1}}=\frac{C_{1}}{C_{2}}=\frac{3}{2}$
- PE increases by 50% (prop. to increase in d)
- Q: Who provides the additional energy?

Mechanical work is required to pull the plates apart \longrightarrow the $t Q /-Q$ charged plates attract each other.

