PhysicsTutor ${ }^{(6)}$

Doppler effect

Giordano 13.56\&57

Problem:

- A bat uses a 60 kHz ultrasound wave to track an insect initially 30 cm away, then moving to be 40 cm away.
- Find the difference in echo times.
- If the insect moved the 10 cm directly away in a time of 0.50 sec , what is the magnitude of the frequency shift of the reflected wave picked up by the bat?

Relevant ideas:

Relevant ideas:

- Consider relative motion, i.e., use the bat's frame as a reference.

Relevant ideas:

- Consider relative motion, i.e., use the bat's frame as a reference.
- For observers moving away from a stationary source there is a frequency decrease.

Relevant ideas:

- Consider relative motion, i.e., use the bat's frame as a reference.
- For observers moving away from a stationary source there is a frequency decrease.
- The reflected waves (of decreased frequency) are perceived by the bat as coming from a receding source.

Equations associated with ideas:

1) $t_{1}=\frac{2 x_{1}}{v_{s}} ; \quad t_{2}=\frac{2 x_{s}}{v_{s}} ; \quad \Delta t=t_{2}-t_{1}$
2) Doppler - moving observer $\begin{aligned} \text { stationary source }\end{aligned} \quad f_{\text {obs }}=f_{\text {sire }}\left(1-\frac{v_{0 b s}}{v_{s}}\right)$
3) Doppler - moving source stationary observer $\quad f_{o b s}=\frac{f_{s r c}}{1+\frac{v_{s r c}}{v_{s}}}$
To lowest order in $\frac{v_{s r e}}{v_{s}}$ or $\frac{v_{\text {obs }}}{v_{s}}$ it doesn't matter
whether one distinguishes between cases (2), (3).
There is an $\theta\left(\left(\frac{v}{v_{s}}\right)^{2}\right)$ difference which for $v \ll v_{s}$ is negligible.

Strategy

Strategy

- The signal travels from the bat to the insect and back, i.e., twice the distance at v_{s}.

Strategy

- The signal travels from the bat to the insect and back, i.e., twice the distance at v_{s}.
- The insect is treated as a moving observer, then it gives off the reflected waves at the shifted frequency.

Strategy

- The signal travels from the bat to the insect and back, i.e., twice the distance at v_{s}.
- The insect is treated as a moving observer, then it gives off the reflected waves at the shifted frequency.
- The bat observes the reflected waves from a moving source.

Strategy

- The signal travels from the bat to the insect and back, i.e., twice the distance at v_{s}.
- The insect is treated as a moving observer, then it gives off the reflected waves at the shifted frequency.
- The bat observes the reflected waves from a moving source.
- The Doppler effect kicks in twice.

Solution

Solution

- $\Delta t=t_{2}-t_{1}=\frac{2}{v_{s}}\left(x_{2}-x_{1}\right)=\frac{0.2}{343} \mathrm{~s}=0.6 \mathrm{~ms}$
we lost r one significant digit

Solution

- $\Delta t=t_{2}-t_{1}=\frac{2}{v_{s}}\left(x_{2}-x_{1}\right)=\frac{0.2}{343} \mathrm{~s}=0.6 \mathrm{~ms} \begin{aligned} & \text { we lost r one } \\ & \text { significant } \\ & \text { digit }\end{aligned}$

$$
f_{\text {obs }}=f_{s r c}\left(1-\frac{v_{\text {obs }}}{v_{s}}\right) ; v_{\text {obs }}=\frac{0.1}{0.5} \frac{\mathrm{~m}}{\mathrm{~s}}=0.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Solution

- $\Delta t=t_{2}-t_{1}=\frac{2}{v_{s}}\left(x_{2}-x_{1}\right)=\frac{0.2}{343} \mathrm{~s}=0.6 \mathrm{~ms} \begin{gathered}\text { we lost rove } \\ \text { significant } \\ \text { digit }\end{gathered}$

$$
f_{\text {obs }}=f_{s r c}\left(1-\frac{v_{\text {obs }}}{v_{s}}\right) ; v_{\text {obs }}=\frac{0.1}{0.5} \frac{\mathrm{~m}}{\mathrm{~s}}=0.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

reflected waves produced with fobs $=59.965 \mathrm{kHz}$

Solution

- $\Delta t=t_{2}-t_{1}=\frac{2}{v_{s}}\left(x_{2}-x_{1}\right)=\frac{0.2}{343} \mathrm{~s}=0.6 \mathrm{~ms} \begin{aligned} & \text { we lost r one } \\ & \text { significant } \\ & \text { digit }\end{aligned}$
$f_{\text {obs }}=f_{\text {sc }}\left(1-\frac{v_{\text {obs }}}{v_{s}}\right) ; v_{\text {obs }}=\frac{0.1}{0.5} \frac{\mathrm{~m}}{\mathrm{~s}}=0.2 \frac{\mathrm{~m}}{\mathrm{~s}}$
reflected waves produced with fobs $=59.965 \mathrm{kHz}=f_{R}$
bat: $f_{\text {obs }}=\frac{f_{R}}{1+v_{\text {sc }} / v_{s}} ; v_{\text {sc }}=0.2 \frac{\mathrm{~m}}{\mathrm{~s}} ; \quad f^{\text {echo }}=59.930 \mathrm{kHz}$ Frequency shift $\Delta f=f^{\text {emitted }}-f^{\text {echo }}=70 \mathrm{~Hz}$

