PhysicsTutor

Doppler effect for EM waves

Giambattista 22.59

Problem:

- A police car's radar gun emits microwaves with frequency $f_{1}=36 \mathrm{GHz}$. The beam reflects from a car that speeds away from the cruiser with $43 \mathrm{~m} / \mathrm{s}$. The receiver in the police car detects the reflected waves at f_{2}.
- Which frequency is higher, f_{1} or f_{2} ?
- Calculate the difference $f_{2}-f_{1}$.

Relevant ideas:

Relevant ideas:

- The Doppler effect for EM waves is derived in special relativity. It only involves the relative velocity between source and observer.

$$
\begin{aligned}
& f_{\text {obs }}=f_{\text {sro }} \sqrt{\frac{1+v_{\text {rel }} / c}{1-v_{\text {rel }} / c}} \underset{\substack{v_{\text {red }}^{c} \ll 1}}{\approx} f_{\text {sc }}\left(1+\frac{v_{\text {rel }}}{c}\right) \\
& v_{\text {rel }}>0 \text { for approaching abserver-source } \\
& v_{\text {rel }}<0 \text { for receding } \quad \longrightarrow
\end{aligned}
$$

Relevant ideas:

- The Doppler effect for EM waves is derived in special relativity. It only involves the relative velocity between source and observer.
- In radar (emitting waves, observing frequency difference to waves reflected off a moving object) the Doppler effect appears twice.

```
gun
\Xi)!
| reciver (|l }\mp@subsup{|}{\mp@subsup{s}{s}{\prime}->\mp@subsup{f}{0ob}{\prime}}{
```

$\underset{\substack{\text { ilrocerves } \\ \text { reflects abs } \\ f_{\text {obs }}=f_{s}^{\prime}}}{\substack{\text { at } \\ \text { libs }}}$

Relevant ideas:

- The Doppler effect for EM waves is derived in special relativity. It only involves the relative velocity between source and observer.
- In radar (emitting waves, observing frequency difference to waves reflected off a moving object) the Doppler effect appears twice.
- EM waves travel in vacuum. No medium is involved. We treat air like vacuum here. In the $v_{s} / v_{\text {prop }} \ll 1$ approximation all formulas become the same and depend on relative velocity only. ${ }_{6}$

Equations associated with ideas:

$$
f_{\text {obs }}=f_{s r c} \sqrt{\frac{1+v_{\text {rel }} / c}{1-v_{\text {rel }} / c}} \quad \underset{\frac{v_{r e l}}{c} \ll 1}{\approx} f_{\text {sire }}\left(1+\frac{v_{r e l}}{c}\right)
$$

reflected waves
reflected waves 'new 'source: $\quad f_{\text {sri }}^{\prime}=f_{\text {obs }} \approx f_{\text {sire }}\left(1+\frac{v_{\text {rel }}}{c}\right)$
they are observed
getting closer

$$
v_{\text {rel }}<0 \text { for }
$$

getting away

$$
\begin{aligned}
f_{\text {obs }}^{\prime \prime} \approx & f_{\text {sra }}^{\prime}\left(1+\frac{v_{r e l}^{c}}{c}\right) \\
= & f_{\text {sra }}\left(1+\frac{v_{r e l}}{c}\right)^{2} \\
= & f_{\text {sra }}\left[1+2 \frac{v_{r e l}^{c}}{c}+\left(\frac{v_{r e}}{f_{c}}\right)^{2}\right] \\
= & f_{\text {src }}\left[1+\frac{2 v_{r d}}{c}\right]{ }^{\uparrow} 2^{\text {st }} \text { order order } \\
& \text { quantity } v_{\text {small }} / v^{7}
\end{aligned}
$$

$$
\begin{aligned}
& v_{\text {rel }}>0 \text { for } \\
& \text { getting closer }
\end{aligned}=f_{\text {sure }}\left[1+2 \frac{v_{r e 1}^{c}}{c}+\left(\frac{v_{r p}}{\uparrow}\right)^{2}\right]
$$

Strategy

Strategy

- Calculate the frequency of the radar waves as received by the speeding car.

$$
f_{\text {obs }} \approx f_{\text {sere }}\left(1+\frac{v_{\text {rel }}^{c}}{}\right) \quad v_{\text {rel }}<0 \text { here! }
$$

Strategy

- Calculate the frequency of the radar waves as received by the speeding car.
- The reflected waves have this shifted frequency, and are emitted from a moving source.

$$
\begin{array}{r}
f_{\text {sic }}^{\prime}=f_{\text {obs }} \approx f_{\text {sire }}\left(1+\frac{v_{\text {rel }}}{c}\right) \quad\left(v_{\text {rel }}<0\right) \\
f_{\text {sc }}^{\prime}<f_{\text {sc }}
\end{array}
$$

Strategy

- Calculate the frequency of the radar waves as received by the speeding car.
- The reflected waves have this shifted frequency, and are emitted from a moving source.
- The receiver in the police car picks up the waves at a shifted frequency, since the source is moving away.

$$
f_{\text {obs }}^{\prime} \approx f_{\text {sre }}^{\prime}\left(1+\frac{v_{\text {rel }}}{c}\right) \quad f_{\text {obs }}<f_{\text {sric }}^{\prime}
$$

Solution

Solution

- $f_{1}\left(>f_{2}\right)$ is higher. moving-away observer perceives t

Solution

- $f_{1}\left(>f_{2}\right)$ is higher. moving-away observer perceives + reflects lower f waves. Then $2^{\text {nd }}$ effect.

$$
f_{\text {obs }}=f_{\text {sc }}\left(1+\frac{v_{\text {rel }}}{c}\right)=36 \times 10^{9}\left(1-\frac{43}{3.0 \times 10^{8}}\right)=35.999995 \mathrm{GHz}
$$

Solution

- $f_{1}\left(>f_{2}\right)$ is higher. moving-away observer perceives + reflects lower f waves. Then $2^{\text {nd }}$ effect.

$$
\begin{aligned}
& f_{\text {obs }}=f_{\text {sire }}\left(1+\frac{v_{\text {rel }}}{c}\right)=36 \times 10^{9}\left(1-\frac{43}{3.0 \times 10^{8}}\right)=35.999995 \mathrm{GHz} \\
& f_{\text {obs }}^{\prime}=f_{\text {obs }}\left(1+\frac{v_{\text {rel }}}{c}\right)=f_{\text {sic }}\left(1+\frac{v_{\text {red }}}{c}\right)^{2} \approx f_{\text {sra }}\left(1+2 \frac{v_{\text {rd }}}{c}\right)
\end{aligned}
$$

Solution

- $f_{1}\left(>f_{2}\right)$ is higher. moving-away observer perceives + $f_{1}\left(>f_{2}\right)$ is higher. reflects lower f waves. Then $2^{\text {nd }}$ effect.

$$
\begin{aligned}
& f_{\text {obs }}=f_{s r c}\left(1+\frac{v_{\text {rel }}}{c}\right)=36 \times 10^{9}\left(1-\frac{43}{3.0 \times 10^{8}}\right)=35.99999 \mathrm{GHz} \\
& f_{\text {obs }}^{\prime}=f_{\text {obs }}\left(1+\frac{v_{r e l}}{c}\right)=f_{s r c}\left(1+\frac{v_{r e l}}{c}\right)^{2} \approx f_{\text {sire }}\left(1+2 \frac{v_{r d}}{c}\right) \\
& f_{\text {rec }}=f_{\text {obs }}^{\prime}=366 \mathrm{~Hz}\left(1+\frac{86}{3.0 \times 10^{8}}\right)=35.99999 \mathrm{GHz} \\
& \Delta f=f_{z}-f_{1}=-10.3 \mathrm{kHz} \begin{array}{l}
\text { This is needed to high } \\
\text { accuracy to be able to } \\
\text { issue a ticket! }
\end{array}
\end{aligned}
$$

Note: by measuring Δf, the frequency difference, which is tref for an approaching speeder, the cruiser radar equipment calculates $v_{\text {rel. . When the cruiser moves, it has to }}^{\text {have a separate measure of its sped }}$

