PhysicsTutor

Doppler effect for EM waves Giambattista 22.59

Problem:

- A police car's radar gun emits microwaves with frequency f₁=36 GHz. The beam reflects from a car that speeds away from the cruiser with 43 m/s. The receiver in the police car detects the reflected waves at f₂.
- Which frequency is higher, f_1 or f_2 ?
- Calculate the difference $f_2 f_1$.

 The Doppler effect for EM waves is derived in special relativity. It only involves the relative velocity between source and observer.

$$f_{obs} = f_{src} \sqrt{\frac{1 + v_{rel}}{1 - v_{rel}}} \approx f_{src} \left(1 + \frac{v_{rel}}{c}\right)$$

$$v_{rel} \sim 1 \quad v_{rel} \sim 1 \quad v_{rel} \sim 1$$

$$v_{rel} \sim 0 \quad \text{for approaching observer-source}$$

$$v_{rel} \sim 0 \quad \text{for receding} \quad \leftarrow \quad \rightarrow$$

- The Doppler effect for EM waves is derived in special relativity. It only involves the relative velocity between source and observer.
- In radar (emitting waves, observing frequency difference to waves reflected off a moving object) the Doppler effect appears twice.

- The Doppler effect for EM waves is derived in special relativity. It only involves the relative velocity between source and observer.
- In radar (emitting waves, observing frequency difference to waves reflected off a moving object) the Doppler effect appears twice.
- EM waves travel in vacuum. No medium is involved. We treat air like vacuum here.
 In the Us/Us << 1 approximation all formulas prop decome the same and depend on relative velocity only.

Equations associated with ideas:

$$f_{obs} = f_{src} \sqrt{\frac{1 + \frac{v_{rel}}{c}}{1 - \frac{v_{rel}}{c}}} \approx f_{src} \left(1 + \frac{v_{rel}}{c}\right)$$

La Charles I a marga

The field waves
are new source:
$$\int_{src} = f_{obs} \approx \int_{src} (1 + \frac{v_{rel}}{c})$$

they are observed
at: $f_{obs} \approx \int_{src} (1 + \frac{v_{rel}}{c})$
 $= \int_{src} (1 + \frac{v_{rel}}{c})^2$
 $v_{rel} > 0$ for
 $getting closer$
 $v_{rel} < 0$ for
 $f_{src} [1 + 2 \frac{v_{rel}}{c} + (\frac{v_{rel}}{c})^2]$
 $= \int_{src} [1 + 2 \frac{v_{rel}}{c} + (\frac{v_{rel}}{c})^2]$
 $f_{src} [1 + \frac{2v_{rel}}{c}]$
 $v_{rel} < 0$ for
 $getting away$
 $guantity v_{rel}/c^7$

• Calculate the frequency of the radar waves as received by the speeding car.

- Calculate the frequency of the radar waves as received by the speeding car.
- The reflected waves have this shifted frequency, and are emitted from a moving source.

$$f_{src} = f_{obs} \approx f_{src} (1 + \frac{v_{rel}}{2})$$
 ($v_{rel} < o$)
 $f_{src} < f_{src}$

- Calculate the frequency of the radar waves as received by the speeding car.
- The reflected waves have this shifted frequency, and are emitted from a moving source.
- The receiver in the police car picks up the waves at a shifted frequency, since the source is moving away.

• $f_1(>f_2)$ is higher. reflects lower f waves. Then 2^{nd} effect.

• $f_1(>f_2)$ is higher. reflects lower f waves. Then 2^{nd} effect.

•
$$f_{obs} = f_{src} \left(1 + \frac{V_{rel}}{c} \right) = 36 \times 10^9 \left(1 - \frac{43}{3.0 \times 10^8} \right) = 35.9999995 \text{ GHz}$$

- f_1 (> f_2) is higher. reflects lower f waves. Then 2^{nd} effect.
- $f_{obs} = f_{src} \left(1 + \frac{V_{rel}}{c} \right) = 36 \times 10^9 \left(1 \frac{43}{3.0 \times 10^8} \right) = 35.9999995 \text{ GHz}$
- $f_{obs} = f_{obs} \left(1 + \frac{v_{rel}}{z} \right) = f_{src} \left(1 + \frac{v_{rel}}{z} \right)^2 \propto f_{src} \left(1 + 2 \frac{v_{rel}}{z} \right)$

• f_1 (> f_2) is higher. reflects lower f waves. Then 2^{nd} effect. • $f_{obs} = f_{src} \left(1 + \frac{V_{rel}}{c} \right) = 36 \times 10^9 \left(1 - \frac{43}{3.0 \times 10^8} \right) = 35.9999995 \text{ GHz}$ $f_{obs} = f_{obs} \left(1 + \frac{v_{rel}}{c}\right) = f_{src} \left(1 + \frac{v_{rel}}{c}\right)^2 \approx f_{src} \left(1 + 2 \frac{v_{rel}}{c}\right)$ • $f_{rec} = f_{obs} = 36 \text{ GHz} \left(1 + \frac{86}{3.0 \times 10^8} \right) = 35.99999 \text{ GHz}$ $\Delta f = f_2 - f_1 = -10.3$ kHz This is needed to high accuracy to be able to issue a ticket! Note: by measuring SF, the frequency difference, which is the for an approaching speeder, the cruiser radar equipment calculates tree. When the chuiser moves, it has to have a separate measure of its sped