PhysicsTutor

Point charges: electric potential

Problem:

- Two point charges, $q_{1}=-3.5 \mathrm{nC}$ and $q_{2}=+2.5$ nC are located at diagonally opposite corners of a square with $L=2.5 \mathrm{~cm}$. What is the electric potential at the other two corners of the square, A and B ?

Relevant ideas:

Relevant ideas:

- Electric potential from a point charge q : falls with distance r according to $V(r)=K q / r$

Relevant ideas:

- Electric potential from a point charge q : falls with distance r according to $V(r)=K q / r$
- Electric potentials for multiple charges add (superposition principle). Total V represents net potential energy divided by probe charge.

$$
\begin{aligned}
& V_{i}(r)=\frac{K q_{i}}{r} \rightarrow V_{i}(\vec{r})=\frac{k q_{i}}{\left|\vec{r}-\vec{r}_{i}\right|} \\
& q_{i} \text { is located } D(0,0) \rightarrow q_{i} \text { is located at } \vec{r}_{i}=\left(x_{i}, y_{i}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { N charges: } \\
\text { ential for probe } q_{p}: & V_{\text {net }}(\vec{r})=\sum_{i=1}^{N} \frac{K q_{i}}{\left|\vec{r}-\vec{r}_{i}\right|} \begin{array}{l}
\text { add scalars, } \\
\text { but take position } \\
\text { vectors } \vec{r}_{i} \text { and } \\
\text { net } V_{\text {net }}(\vec{r})
\end{array} \\
\text { location } \vec{r} \text { into account }
\end{array}
$$

Relevant ideas:

- Electric potential from a point charge q : falls with distance r according to $V(r)=K q / r$
- Electric potentials for multiple charges add (superposition principle). Total V represents net potential energy divided by probe charge.
- Use geometry and symmetry: Is the potential the same at points A and B ?

There is reflection symmetry about diagonal.
There would be an additional symmetry about / for $q_{1}=q_{2}$ +re

Q: where is the potential zero? H would be on / for $q_{1}=-q_{2}$.

Blue circles have larger radii, since $\left|q_{1}\right|>\left|q_{2}\right|$
Choose $\vec{r}_{A}=(0,0)$, then $\vec{r}_{1}=L \hat{\jmath}, \vec{r}_{2}=L \hat{\imath}$

$$
V_{1}\left(\vec{r}_{A}\right)=\frac{k q_{1}}{\left|\vec{r}_{A}-\vec{r}_{1}\right|}=\frac{k q_{1}}{\left|-\vec{r}_{1}\right|}=\frac{k q_{1}}{r_{1}}
$$

Simple, after all: just add $V_{1}(L)+V_{2}(L)$!

Strategy

Strategy

- Draw schematic equipotential lines in the vicinity of the point charges, use different color for positive vs negative charges q.

Strategy

- Draw schematic equipotential lines in the vicinity of the point charges, use different color for positive vs negative charges q.
- Realize now the symmetry for points A and B.

Strategy

- Draw schematic equipotential lines in the vicinity of the point charges, use different color for positive vs negative charges q.
- Realize now the symmetry for points A and B.
- Evaluate the potentials from q_{1} and q_{2} at location A and add them.

Strategy

- Draw schematic equipotential lines in the vicinity of the point charges, use different color for positive vs negative charges q.
- Realize now the symmetry for points A and B.
- Evaluate the potentials from q_{1} and q_{2} at location A and add them.
- Realize how easy it is to calculate the potential anywhere: just scalar addition required.

Solution

Solution

- a $A: V_{1}=\frac{K q_{1}}{L}=\frac{9 \cdot 0 \cdot 10^{9} \cdot(-3.5) \cdot 10^{-9}}{2.5 \cdot 10^{-2}} \frac{\mathrm{Nm}}{\mathrm{C}}=-1260 \mathrm{~V}$

Solution

- a $A: \quad V_{1}=\frac{K q_{1}}{L}=\frac{9 \cdot 0 \cdot 10^{9} \cdot(-3.5) \cdot 10^{-9}}{2.5 \cdot 10^{-2}} \frac{\mathrm{Nm}}{\mathrm{C}}=-1260 \mathrm{~V}$
- $\quad V_{2}=\frac{K q_{2}}{L}=\frac{9.0 \cdot 10^{9} \cdot 2.5 \cdot 10^{-9}}{2.5 \cdot 10^{-2}} \frac{\mathrm{Nm}}{\mathrm{C}}=+900 \mathrm{~V}$

Solution

- a $A: \quad V_{1}=\frac{K q_{1}}{L}=\frac{9.0 \cdot 10^{9} \cdot(-3.5) \cdot 10^{-9}}{2.5 \cdot 10^{-2}} \frac{\mathrm{Nm}}{\mathrm{C}}=-1260 \mathrm{~V}$
- $V_{2}=\frac{K q_{2}}{L}=\frac{9.0 \cdot 10^{9} \cdot 2.5 \cdot 10^{-9}}{2.5 \cdot 10^{-2}} \frac{\mathrm{Nm}}{\mathrm{C}}=+900 \mathrm{~V}$
- $V_{\text {net }}=-360 \mathrm{~V}$. same value $D \mathrm{~B}$

Solution

- $\begin{aligned} & \text { a } A: V_{1}=\frac{K q_{1}}{L}=\frac{9.0 \cdot 10^{9} \cdot(-3.5) \cdot 10^{-9}}{2.5 \cdot 10^{-2}} \frac{\mathrm{Nm}}{\mathrm{C}}=-1260 \mathrm{~V} \\ & \text { - } V_{2}=\frac{K q_{2}}{L}=\frac{9.0 \cdot 10^{9} \cdot 2.5 \cdot 10^{-9}}{2.5 \cdot 10^{-2}} \frac{\mathrm{Nm}}{\mathrm{C}}=+900 \mathrm{~V}\end{aligned}$
- $V_{\text {net }}=-360 \mathrm{~V}$. same value $\square B$

Note: the contribution from each point charge to the total potential $V_{\text {net }}\left(\vec{r}_{A}\right)$ depends only on the distance $d_{i}=\left|\vec{r}_{A}-\vec{r}_{i}\right|: \quad V_{\text {net }}=\sum_{i=1}^{N} \frac{K q_{i}}{d_{i}}$
The electric field components $\left(E_{x}, E_{y}\right)$ at \vec{r}_{A} can be obtained from knowledge of $V_{\text {net }}$ in the vicinity of \vec{r}_{A} :

$$
E_{x}^{\text {net }}=-\left.\frac{d}{d x} V_{\text {net }}\right|_{\vec{r}_{A}}, \left.E_{y}^{\text {net }}=-\frac{d}{d y} V_{\text {net }} \right\rvert\, \vec{r}_{A}
$$

