PhysicsTutor

Point charges: electric field

Giordano 17.45

Problem:

- Two point particles with charges q_{1} and q_{2} are separated by a distance L, as shown. The electric field vanishes at A, which is a distance $L / 4$ from q_{1}. What is the ratio q_{1} / q_{2} ?

Relevant ideas:

Relevant ideas:

- Electric field from a positive point charge q : radially outward, falls with distance $r: q / r^{2}$

Relevant ideas:

- Electric field from a positive point charge q : radially outward, falls with distance $r: q / r^{2}$
- Electric fields for multiple charges add vectorially (superposition principle). Total E represents net force divided by probe charge.

Relevant ideas:

- Electric field from a positive point charge q : radially outward, falls with distance $r: q / r^{2}$
- Electric fields for multiple charges add vectorially (superposition principle). Total E represents net force divided by probe charge.
- Field from 2 charges is zero at some inbetween point: there must be a cancellation. The probe charge is in equilibrium there.

Equations associated with ideas:
 q_{1} on q_{p} (virtual)

magnitudes!
OR: equate the magnitudes

$$
E_{1, x}=+\frac{K g_{1}}{(L / 4)^{2}}
$$

$$
E_{2, x}=-\frac{K q_{2}}{(3 / 4 L)^{2}}
$$

$$
E_{\text {net }, x}=E_{1, x}+E_{2, x}=0
$$ vectorial addition.

$$
\begin{aligned}
& \vec{E}_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r_{1}^{2}} \hat{r}_{1}
\end{aligned}
$$

Strategy

Strategy

- Express the fields at point A from charges q_{1} and q_{2}. The distances are given in terms of L.

Strategy

- Express the fields at point A from charges q_{1} and q_{2}. The distances are given in terms of L.
- The net field is the sum of the two, and is to be set to zero. Vector addition is key here!

Strategy

- Express the fields at point A from charges q_{1} and q_{2}. The distances are given in terms of L.
- The net field is the sum of the two, and is to be set to zero. Vector addition is key here!
- This condition should constrain the ratio of the two charges. Name $q_{1}=R q_{2}$.

Strategy

- Express the fields at point A from charges q_{1} and q_{2}. The distances are given in terms of L.
- The net field is the sum of the two, and is to be set to zero.
- This condition should constrain the ratio of the two charges. Name $q_{1}=R q_{2}$.
- Keep in mind: the same sign of q_{1} and q_{2} leads to zero net field.

Solution

Solution
$\frac{K q_{1}}{(L / 4)^{2}}=\frac{K q_{2}}{(3 L / 4)^{2}}, \quad K=\frac{1}{4 \pi \varepsilon_{0}}$

Solution
$\left.\frac{K / q_{1}}{(L / 4)^{2}}=\frac{K q_{2}}{(3 L / 4)^{2}} \right\rvert\, \cdot L^{2}, \quad K=\frac{1}{4 \pi \varepsilon_{0}}$

- $\quad q_{1}\left(\frac{4}{1}\right)^{2}=q_{2}\left(\frac{4}{3}\right)^{2} \quad \therefore q_{1} / q_{2}=1 / 3^{2}=1 / q$

Solution
$\left.\underline{K / q_{1}}(L / 4)^{2}=\frac{K q_{2}}{(3 L / 4)^{2}} \right\rvert\, \cdot L^{2}, \quad K=\frac{1}{4 \pi \varepsilon_{0}}$
$q_{1}\left(\frac{4}{1}\right)^{2}=q_{2}\left(\frac{4}{3}\right)^{2} \quad \therefore q_{1} / q_{2}=1 / 3^{2}=1 / 9$
same sign is required, Note: $q_{1} \cdot q_{2}>0$ both can be negative

Solution

$$
\begin{aligned}
& \left.\frac{K q_{1}}{(L / 4)^{2}}=\frac{K q_{2}}{(3 L / 4)^{2}} \right\rvert\, \cdot L^{2}, \quad K=\frac{1}{4 \pi \varepsilon_{0}} \\
& q_{1}\left(\frac{4}{1}\right)^{2}=q_{2}\left(\frac{4}{3}\right)^{2} \quad \therefore \quad q_{1} / q_{2}=1 / 3^{2}=1 / 9
\end{aligned}
$$

- Note: $q^{2} \cdot q_{2}>0$ same sign is required, Note: $q_{1} \cdot q_{2}>0$ both can be negative

Electric fields from q_{1} and q_{2} at A (i nbetween) point in opposite directions \rightarrow cancellation is possible. Do not add $\frac{k q_{i}}{r_{i}^{2}}$ naively!

