PhysicsTutor

Point charges: electric field Giordano 17.47

Problem:

- Three point charges with $q = -8.2 \ \mu$ C each are located as shown with $L = 4.5 \ mm$.
- What are the magnitude and direction of the electric field at (a) the origin, (b) at y = 6.8 mm on the y-axis?

• Electric field from a positive point charge q: radially outward, falls with distance $r: q/r^2$

- Electric field from a positive point charge q: radially outward, falls with distance r: q/r²
- Electric fields for multiple charges add vectorially (superposition principle). Total E represents net force divided by probe charge.

- Electric field from a positive point charge q: radially outward, falls with distance r: q/r²
- Electric fields for multiple charges add vectorially (superposition principle). Total E represents net force divided by probe charge.
- Use symmetry to simplify calculations: work in Cartesian (x,y) coordinates when specifying the components of E.

Equations associated with ideas:

Draw the vectors for the E fields from the three charges at the two needed locations (0,0) and (0,y₁) schematically (not to scale).

- Draw the vectors for the E fields from the three charges at the two needed locations (0,0) and (0,y₁) schematically (not to scale).
- Realize that the E_x components from the two charges on the x-axis will cancel each other.

- Draw the vectors for the E fields from the three charges at the two needed locations (0,0) and (0,y₁) schematically (not to scale).
- Realize that the E_x components from the two charges on the x-axis will cancel each other.
- For the (0,0) location this means that only the bottom charge contributes to the field there.

- Draw the vectors for the E fields from the three charges at the two needed locations (0,0) and (0,y₁) schematically (not to scale).
- Realize that the E_x components from the two charges on the x-axis will cancel each other.
- For the (0,0) location this means that only the bottom charge contributes to the field there.
- At $(0,y_1)$: charges at $x = \pm L$ contribute to $E_{net,y}$.

•
$$\Im P_a = (0,0) : \vec{E}_{net} = \vec{E}_3 = \frac{k|q_3|}{L^2}(-\hat{f}); k = \frac{1}{4\pi\epsilon_0}$$

•	$a P_a =$	(0,0):	$\vec{E}_{net} =$	$\vec{E}_3 = \frac{Klg}{L}$	¹³ / ₂ (-j); K	= 1 41120	>
•	(a) Enet =	<u>9.0×109</u> 4.5 ² ×	8.2×10 10 ⁻⁶	$\frac{Nm^2 C}{C^2 m^2}$	= 3.6 × 10	NC	along -y dir'n
	Enet ^(b)	= E3 +	2E2,y ;	$E_3 = \frac{K q_3 }{(L+y_1)}$	$z = \frac{9.0 \times 10^9}{(4.5 + 6)}$	3.2×15 ⁶ 8) × 15 ⁶	$\frac{N}{C} = 5.78 \times 10^8 \frac{N}{C}$

•
$$P_{a} = (0,0)$$
 : $\vec{E}_{net} = \vec{E}_{3} = \frac{K|q_{3}|}{L^{2}}(-\hat{J})$; $K = \frac{1}{4\pi\epsilon_{0}}$
• $E_{net}^{(a)} = \frac{q.0 \times 10^{9}}{4.5^{2} \times 10^{-6}} \frac{Nm^{2}}{C^{2}} = 3.6 \times 10^{9} \frac{N}{C}$ along
• $E_{net}^{(b)} = E_{3} + 2E_{2,y}$; $E_{3} = \frac{K|q_{3}|}{(L+g_{1})^{2}} = \frac{q.0 \times 10^{9}}{(4.5+6.9)^{2} \times 10^{6}} \frac{N}{C} = 5.78 \times 10^{9} \frac{N}{C}$
• $E_{2,y} = E_{2} \cdot \frac{g_{11}}{(g_{12}^{2}+L^{2})} = \frac{K|q_{2}|g_{1}}{(g_{12}^{2}+L^{2})^{3}} = \frac{q.0 \times 10^{9}}{(6.8^{2}+4.5^{2})^{1.5}} \frac{N}{(0^{-3})^{3}} \frac{N}{C}$
 $E_{2,y} = \frac{q.0 \times 8.2 \times 6.8}{(6.8^{2}+4.5^{2})^{1.5}} \times 10^{9} \frac{N}{C} = 0.926 \times 10^{7} \frac{N}{C}$ along
 $E_{3} + 2E_{2,y} = 2.43 \times 10^{9} \frac{N}{C}$ $E_{net}^{(b)} = 2.4 \times 10^{9} \frac{N}{C}$ along