PhysicsTutor ${ }^{\text {(10) }}$

Point charges: electric field

Problem:

- Two point charges, $q_{1}=-3.5 \mathrm{nC}$ and $q_{2}=+4.5$ nC are located at the bottom corners of a square with $L=2.5 \mathrm{~cm}$. What are the magnitude and direction of the electric field at the two top corners of the square, A and B ?

Relevant ideas:

Relevant ideas:

- Electric field from a positive point charge q : radially outward, falls with distance r : $\mathrm{Kq} / \mathrm{r}^{2}$

$$
q<0
$$

Relevant ideas:

- Electric field from a positive point charge q : radially outward, falls with distance r : $\mathrm{Kq} / \mathrm{r}^{2}$
- Electric fields for multiple charges add vectorially (superposition principle). Total E represents net force divided by probe charge.

(vector addition)

Relevant ideas:

- Electric field from a positive point charge q : radially outward, falls with distance r : $\mathrm{Kq} / \mathrm{r}^{2}$
- Electric fields for multiple charges add vectorially (superposition principle). Total E represents net force divided by probe charge.
- Use geometry to simplify calculations: work in Cartesian (x, y) coordinates when specifying \mathbf{E}. Q: symmetry for point B after solving at A ???

Equations associated with ideas:

$$
\begin{aligned}
& \left|E_{2}\right|=\frac{K q_{2}}{\left(2 L^{2}\right)} \quad \begin{array}{l}
\text { diagonal: } \sqrt{2 L} \\
K=\frac{1}{4 \pi \varepsilon_{0}} \\
E_{2 x}=-E_{2 y} \quad=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \\
\text { direction: }\left(-\frac{\hat{L}}{\sqrt{2}}+\frac{\hat{\jmath}}{\sqrt{2}}\right) \\
\vec{E}_{2}=\frac{K q_{2}}{2 L^{2}} \frac{1}{\sqrt{2}}(-\hat{\imath}+\hat{\jmath})
\end{array}, \$ l
\end{aligned}
$$

Alternative: $\quad E_{2 x}=\left|E_{2}\right| \cos \theta, \quad E_{2 y}=\left|E_{2}\right| \sin \theta$

$$
\begin{aligned}
& \vartheta=\text { angle } w . \text {. ie } x \text {-axis }=90^{\circ}+45^{\circ}=135^{\circ} \\
& \cos \theta=-\frac{1}{\sqrt{2}} \quad \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Strategy

no symmetry, since $\quad q_{1} \neq q_{2}$
(different magnitude) also: sign difference

Strategy

- Draw the vectors for the \mathbf{E} fields from the two charges at the two needed locations A and B, do it schematically (not to scale).

Strategy

- Draw the vectors for the \mathbf{E} fields from the two charges at the two needed location A, do it schematically (not to scale).
- Realize that the directions of \mathbf{E}_{1} and \mathbf{E}_{2} are along the vertical and diagonal respectively.

Strategy

- Draw the vectors for the \mathbf{E} fields from the two charges at the two needed location A, do it schematically (not to scale).
- Realize that the directions of \mathbf{E}_{1} and \mathbf{E}_{2} are along the vertical and diagonal respectively.
- Find \mathbf{E}_{1} and \mathbf{E}_{2} in (x, y) components and add.

Strategy

- Draw the vectors for the \mathbf{E} fields from the two charges at the two needed location A, do it schematically (not to scale).
- Realize that the directions of \mathbf{E}_{1} and \mathbf{E}_{2} are along the vertical and diagonal respectively.
- Find \mathbf{E}_{1} and \mathbf{E}_{2} in (x, y) components and add.
- Convert the result to magnitude and direction, then do the calculation at B (no symmetry!)

Solution

Solution

$$
A: \quad \vec{E}_{1}=\frac{-K q_{1} \mid}{L^{2}} \hat{\jmath} \quad \vec{E}_{2}=\frac{K q_{2}}{2 L^{2}} \frac{1}{\sqrt{2}}(-\hat{\imath}+\hat{\jmath})
$$

Solution
$\vec{A}: \overrightarrow{E_{1}}=\frac{-K q_{1} \mid}{L^{2}} \hat{\jmath} \quad \vec{E}_{2}=\frac{K q_{2}}{2 L^{2}} \frac{1}{\sqrt{2}}(-\hat{\imath}+\hat{\jmath})$
$\vec{E}_{1}=\frac{-9.0 \times 10^{9} \cdot 3.5 \times 10^{-9}}{2.5^{2} \times 10^{-4}} \frac{\mathrm{~N}}{\mathrm{C}} \hat{\jmath}=-5.04 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{c}} \hat{\jmath} \quad \vec{E}_{2}=2.29 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}(-\hat{\imath}+\hat{\jmath})$

Solution

- A: $\vec{E}_{1}=\frac{-k q_{1} \mid}{L^{2}} \hat{\jmath} \quad \vec{E}_{2}=\frac{k q_{2}}{2 L^{2}} \frac{1}{\sqrt{2}}(-\hat{\imath}+\hat{\jmath})$
$\begin{array}{ll}\vec{E}_{1}=\frac{-9.0 \times 10^{9} \cdot 3.5 \times 10^{-9}}{2.5^{2} \times 10^{-4}} \frac{\mathrm{~N}}{\mathrm{C}} \hat{\jmath}=-5.04 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \hat{\jmath} & \vec{E}_{2}=2.29 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}(-\hat{\imath}+\hat{\jmath}) \\ \vec{E}_{\text {A }} & E_{\text {net }}^{A}=3.58 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \\ \vec{E}_{\text {net }}=(-2.29 \hat{\imath}-2.75 \hat{\jmath}) 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \rightarrow & \vartheta=50^{\circ}+180^{\circ}=230^{\circ}\end{array}$

Solution

- A: $\vec{E}_{1}=\frac{-k q_{1} \mid}{L^{2}} \hat{\jmath} \quad \vec{E}_{2}=\frac{k q_{2}}{2 L^{2}} \frac{1}{\sqrt{2}}(-\hat{\imath}+\hat{\jmath})$
- $\frac{\vec{E}_{1}=\frac{-9.0 \times 10^{9} \cdot 3.5 \times 10^{-9}}{2.5^{2} \times 10^{-4}} \frac{\mathrm{~N}}{\mathrm{C}} \hat{\jmath}=-5.04 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \hat{\gamma} \quad \vec{E}_{2}=2.29 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}(-\hat{\imath}+\hat{\jmath})}{E_{\text {net }}^{A}=3.58 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}}$
- $\vec{E}_{\text {net }}^{A}=(-2.29 \hat{\imath}-2.75 \hat{\jmath}) 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \rightarrow \theta=50^{\circ}+180^{\circ}=230^{\circ}$

$$
\begin{aligned}
& \begin{aligned}
B: \vec{E}_{2} & =\frac{K q_{2}}{L^{2}} \hat{\jmath} \quad \vec{E}_{1}=\frac{-K 1 q_{1} \mid}{2 L^{2}} \frac{1}{\sqrt{2}}(\hat{\imath}+\hat{\jmath}) \quad \xrightarrow{\quad \vec{E}_{n}^{A}} \xrightarrow{\stackrel{\vec{E}_{\text {net }}^{B}}{\rightarrow}} \\
\vec{E}_{2} & =6.48 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \hat{\jmath} \quad \vec{E}_{1}=1.78 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}(-\hat{\imath}-\hat{\jmath})
\end{aligned} \\
& \vec{E}_{\text {net }}^{B}=(-1.8 \hat{\imath}+4.7 \hat{\jmath}) \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \quad E_{\text {net }}^{B}=5.0 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \\
& \vec{E}_{\text {net }}^{A}:(x-y-) \text { components }
\end{aligned}
$$

