## PhysicsTutor ${ }^{\text {(10) }}$

## Electric field and weight

 Giambattista 16.90
## Problem:

- A small charged block with mass $m=2.35 \mathrm{~g}$ and charge $Q$ is placed on an insulated frictionless plane inclined $17.0^{\circ}$ with respect to the horizontal. The block does not slide down due to a $465-\mathrm{N} / \mathrm{C}$ uniform electric field pointing downward parallel to the surface. What is $Q$ ?



## Relevant ideas:

Relevant ideas:

- Gravitational force component along the plane is compensated by the electric force.

$$
\vec{g}=\vec{g}_{\|}+\vec{g}_{\perp}=g \sin \theta \hat{\imath}-g \cos \theta \hat{\jmath}
$$



## Relevant ideas:

- Gravitational force component along the plane is compensated by the electric force.
- Electric field points in the same direction as gravity. Thus, the block is negatively charged.



## Relevant ideas:

- Gravitational force component along the plane is compensated by the electric force.
- Electric field points in the same direction as gravity. Thus, the block is negatively charged.
- The block doesn't accelerate. The net force must be zero. As the weight component along the surface can be calculated from the given data, the charge magnitude can be deduced.

$$
\rightarrow \text { free-body diagram! }
$$

Equations associated with ideas:

$$
\vec{F}_{\vec{E}}=q \stackrel{\rightharpoonup}{E}, \quad m \stackrel{\rightharpoonup}{a}_{\|}=\stackrel{\rightharpoonup}{F}_{n e t}=m \stackrel{\rightharpoonup}{g}_{\|}+\vec{F}_{E}
$$

$$
g_{11}=g \sin \theta
$$

$(\rightarrow 0$ for $T \rightarrow 0)$
derive using

$$
g_{\perp}=g \cos \theta
$$

$(\rightarrow g$ for $\vartheta=0)$ geometry? t trig?

$$
\begin{aligned}
& a_{\text {net, } 11}=0 \\
& a_{\text {net, } 1}=0
\end{aligned} \therefore\left\{\begin{array}{l}
\left|\vec{F}_{E}\right|=\left|m g_{11}\right| \\
|\vec{N}|=\left|m g_{\perp}\right|
\end{array}\right\}
$$



## Strategy

## Strategy

- Find the weight component parallel to the surface. Keep 4 digits for intermediate steps.


## Strategy

- Find the weight component parallel to the surface. Keep 4 digits for intermediate steps.
- Equate its magnitude to the electric force magnitude (which depends on the unknown charge magnitude $|Q|)$.


## Strategy

- Find the weight component parallel to the surface. Keep 4 digits for intermediate steps.
- Equate its magnitude to the electric force magnitude (which depends on the unknown charge magnitude $|Q|)$.
- Find $|Q|$ from the equilibrium condition.


## Strategy

- Find the weight component parallel to the surface. Keep 4 digits for intermediate steps.
- Equate its magnitude to the electric force magnitude (which depends on the unknown charge magnitude $|Q|)$.
- Find $|Q|$ from the equilibrium condition.
- Give the answer with sign, i.e., $Q=-|Q|$.


## Solution

Solution

- $\underline{m g_{11}=m g \sin \theta=2.35 \cdot 10^{-3} \cdot 9.81 \cdot \sin \left(17.0^{\circ}\right)=6.740 \times 10^{-3} \mathrm{~N}}$

Solution

$$
\begin{aligned}
& m g_{11}=m g \sin \theta=2.35 \cdot 10^{-3} \cdot 9.81 \cdot \sin \left(17.0^{\circ}\right)=6.740 \times 10^{-3} \mathrm{~N} \\
& \bullet|Q| E=m g_{11} \quad \therefore|Q|=\frac{m g_{11}}{E}=\frac{6.740 \times 10^{-3} \mathrm{~N}}{465 \mathrm{~N} / \mathrm{C}}=1.45 \times 10^{-5} \mathrm{C}
\end{aligned}
$$

Solution

- $\begin{aligned} & m g_{11}=m g \sin \theta=2.35 \cdot 10^{-3} \cdot 9.81 \cdot \sin \left(17.0^{\circ}\right)=6.740 \times 10^{-3} \mathrm{~N} \\ & \text { - } Q\left|E=m g_{11} \quad \therefore\right| Q \left\lvert\,=\frac{m g_{11}}{E}=\frac{6.740 \times 10^{-3} \mathrm{~N}}{465 \mathrm{~N} / \mathrm{C}}=1.45 \times 10^{-5} \mathrm{C}\right.\end{aligned}$

$$
Q=-14.5 \mu C
$$

Solution
$\underline{m g_{11}=m g \sin \theta=2.35 \cdot 10^{-3} \cdot 9.81 \cdot \sin \left(17.0^{\circ}\right)=6.740 \times 10^{-3} \mathrm{~N}}$
$|Q| E=m g_{11} \therefore|Q|=\frac{m g_{11}}{E}=\frac{6.740 \times 10^{-3} \mathrm{~N}}{465 \mathrm{~N} / \mathrm{C}}=1.45 \times 10^{-5} \mathrm{C}$
$Q=-14.5 \mu C$

- We could have worked directly with $\vec{F}=Q \vec{E}$, used the force components along $\vec{g}_{11}$ and avoided the "magnitude detour":

$$
\begin{aligned}
& \text { scalar with sign } \\
& \begin{array}{l}
\text { Scalar with sign } \\
\text { 1dvector along } \vec{g}_{\|}: \quad F_{E}=Q E=\underset{\text { opposite direction }}{\stackrel{m}{\mid}} \underset{\|}{ } \therefore Q=\frac{-m g \sin \theta}{E}
\end{array}
\end{aligned}
$$

