PhysicsTutor

Electric field and weight Giambattista 16.90

Problem:

 A small charged block with mass m=2.35 g and charge Q is placed on an insulated frictionless plane inclined 17.0° with respect to the horizontal. The block does not slide down due to a 465-N/C uniform electric field pointing downward parallel to the surface. What is Q?

 Gravitational force component along the plane is compensated by the electric force.

- Gravitational force component along the plane is compensated by the electric force.
- Electric field points in the same direction as gravity. Thus, the block is negatively charged.

- Gravitational force component along the plane is compensated by the electric force.
- Electric field points in the same direction as gravity. Thus, the block is negatively charged.
- The block doesn't accelerate. The net force must be zero. As the weight component along the surface can be calculated from the given data, the charge magnitude can be deduced.

Equations associated with ideas:

$$\vec{F}_{E} = q \vec{E}$$
, $\vec{m} \vec{a}_{\parallel} = \vec{F}_{net} = \vec{m} \vec{g}_{\parallel} + \vec{F}_{E}$

• Find the weight component parallel to the surface. Keep 4 digits for intermediate steps.

- Find the weight component parallel to the surface. Keep 4 digits for intermediate steps.
- Equate its magnitude to the electric force magnitude (which depends on the unknown charge magnitude |Q|).

- Find the weight component parallel to the surface. Keep 4 digits for intermediate steps.
- Equate its magnitude to the electric force magnitude (which depends on the unknown charge magnitude |Q|).
- Find |*Q*| from the equilibrium condition.

- Find the weight component parallel to the surface. Keep 4 digits for intermediate steps.
- Equate its magnitude to the electric force magnitude (which depends on the unknown charge magnitude |Q|).
- Find |*Q*| from the equilibrium condition.
- Give the answer with sign, i.e., Q = -|Q|.

•
$$mg_{11} = mg \sin \theta = 2.35 \cdot 10^{-3} \cdot 9.81 \cdot \sin(17.0^{\circ}) = 6.740 \times 10^{-3} N$$

• $mg_{11} = mg \sin \theta = 2.35 \cdot 10^{-3} \cdot 9.81 \cdot \sin(17.0^{\circ}) = 6.740 \times 10^{-3} N$	I
• $ Q = mg_{11} \therefore Q = \frac{mg_{11}}{E} = \frac{6.740 \times 10^{3} N}{465 N/C} = 1.45 \times 10^{5} N$	С
• $Q = -14.5 \mu C$	
• We could have worked directly with $\vec{F}_E = Q \vec{E}$	
used the force components along $\overline{g_{11}}$, and avoided the "magnitude detour":	
Scalar with sign $\hat{\Box}$ along $\vec{g}_{ }$: $F_{E} = QE = -mg_{ }$: $Q = -\frac{mg \sin \theta}{E}$ 1 d vector opposite direction	