PhysicsTutor

Induction
Giambattista 20.46-47

Problem:

- A solenoid of length 2.8 cm and diameter 0.75 cm is wound with 160 turns/cm, and carries current of 0.2 A. What is the flux through one of the windings?
- The current is now decreasing at a rate of 35 A / s, what is the induced EMF in one winding?
- What is the induced EMF in the entire solenoid?

Relevant ideas:

Relevant ideas:

- A solenoid is idealized as a certain number of current loops of diameter d in series.

$$
\left.\begin{array}{rl}
B_{\text {sol }}=N \frac{\mu_{0} I}{l}=\mu_{0} I \frac{N}{l} \quad \begin{array}{l}
l=\text { length } \\
\text { of solenoid }
\end{array} \\
\mu & n=\text { number of windings/ } \\
\text { length }
\end{array}\right] \begin{aligned}
& \text { magnetic field strength inside } \\
& \text { Solenoid } \\
& \text { (derived from Ampère's low) }
\end{aligned} \quad=\frac{N}{l} \quad
$$

Relevant ideas:

- A solenoid is idealized as a certain number of current loops of diameter d in series.
- The current loops create a magnetic field. This field permeates each loop, ie, there is magnetic flux through each loop.

$$
\Phi_{M}^{\text {one loop }}=B_{\text {sol }} \cdot A_{\text {loop }}(\cdot \cos (0))
$$

Relevant ideas:

- A solenoid is idealized as a certain number of current loops of diameter d in series.
- The current loops create a magnetic field. This field permeates each loop, ie, there is magnetic flux through each loop.
- EMF is generated when the flux changes. In this way the solenoid counteracts rapid changes: electromagnets display inertia. magnetic flux from N-turn solenoid changes in oneturn \rightarrow EMF / turn, then add them in series

$$
\rightarrow \text { self inductance } L \sim N^{2}!
$$

Equations associated with ideas:

$$
\begin{array}{ll}
B_{\text {sol }}=N \frac{\mu_{0} I}{l} \quad \phi_{M}^{(1)}=N \frac{\mu_{0} I}{l} \pi\left(\frac{d}{2}\right)^{2} \text { in one turn } \\
\varepsilon & =-\frac{\Delta \phi_{M}}{\Delta t} \quad
\end{array} \begin{aligned}
& \text { caused by } \frac{\Delta I}{\Delta t} \\
& \phi_{M}^{(1)}=\frac{L I}{N} \quad \therefore \\
& \text { (one turn) }
\end{aligned} \begin{aligned}
& L=\frac{N^{2}}{l} \mu_{0} \pi\left(\frac{d}{2}\right)^{2} \quad \begin{array}{l}
\text { (no iron } \\
\text { self inductance in Henry) }
\end{array}
\end{aligned}
$$

Flux for entire solenoid $\phi_{M}=L I=N \phi_{M}^{(1)}$ Solenoid-EMF: $\quad \varepsilon_{s o l}=-\frac{\Delta \phi_{M}}{\Delta t}=-L \frac{\Delta I}{\Delta t}$

Strategy

Strategy

- Determine the number of turns from the length and given winding rate.

Strategy

- Determine the number of turns from the length and given winding rate.
- Calculate the strength of the magnetic field produced by the solenoid, then the flux through one turn (winding).

Strategy

- Determine the number of turns from the length and given winding rate.
- Calculate the strength of the magnetic field produced by the solenoid, then the flux through one turn (winding).
- Calculate the rate of change of the flux from the rate of change for the current, deduce the EMF for one turn. Sum EMF from N windings.

Solution

Solution

$$
l=2.8 \times 10^{-2} \mathrm{~m}, n=\frac{N}{l}=\frac{160}{10^{-2}} \mathrm{~m} \quad \therefore N=448
$$

Solution

- $l=2.8 \times 10^{-2} \mathrm{~m}, n=\frac{N}{l}=\frac{160}{10^{-2}} \mathrm{~m} \quad \therefore N=448$
- $B=\mu_{0} \frac{N}{L} I=4 \pi \cdot 10^{-7} \cdot \frac{160}{10^{-2}} \cdot 0.2 \mathrm{~T}=4.0 \mathrm{mT}$

Solution

- $l=2.8 \times 10^{-2} \mathrm{~m}, n=\frac{N}{l}=\frac{160}{10^{-2}} \mathrm{~m} \quad \therefore N=448$
- $B=\mu_{0} \frac{N}{L} I=4 \pi \cdot 10^{-7} \cdot \frac{160}{10^{-2}} \cdot 0.2 T=4.0 \mathrm{mT}$
- $\phi_{M}^{(1)}=B \cdot A=B \pi\left(\frac{d}{2}\right)^{2}=4.0 \times 10^{-3} \cdot 3.14 \cdot \frac{(75)^{2}}{4} \times 10^{-4} \mathrm{Tm}^{2}=1.8 \times 10^{-7} \mathrm{~W} 6$

Solution

- $l=2.8 \times 10^{-2} \mathrm{~m}, n=\frac{N}{l}=\frac{160}{10^{-2} \mathrm{~m}} \quad \therefore N=448$
- $B=\mu_{0} \frac{N}{L} I=4 \pi \cdot 10^{-7} \cdot \frac{160}{10^{-2}} \cdot 0.2 T=4.0 \mathrm{mT}$
- $\phi_{M}^{(1)}=B \cdot A=B \pi\left(\frac{d}{2}\right)^{2}=4.0 \times 10^{-3} \cdot 3.14 \cdot \frac{(75)^{2}}{4} \times 10^{-4} \mathrm{Tm}^{2}=1.8 \times 10^{-7} \mathrm{~Wb}$
- $\phi_{M}^{\text {sol }}=N \phi_{M}^{(1)}=7.9 \times 10^{-5} \mathrm{~Wb} \quad \therefore L=\frac{\phi_{M}^{501}}{I}=0.4 \mathrm{mH}$

$$
\begin{aligned}
\frac{\Delta \phi_{M}^{501}}{\Delta t}=L \frac{\Delta I}{\Delta t}=0.4 \times 10^{-3} \mathrm{H} \cdot\left(-\frac{35 \mathrm{~A}}{\mathrm{~s}}\right) \therefore \begin{aligned}
\varepsilon & =0.014 \mathrm{~V} \\
& =14 \mathrm{mV}
\end{aligned}
\end{aligned}
$$

