PhysicsTutor ${ }^{\text {(3) }}$

Thin-Film Interference

Giordano 25.18

Problem:

- A plastic film of thickness 250 nm appears to be green (wavelength 500 nm) when viewed in reflection at normal incidence.
- What is the plastic's index of refraction?

Relevant ideas:

Relevant ideas:

- Light reflected from the first surface interferes with light which entered the plastic, then reflected from the back surface.

Relevant ideas:

- Light reflected from the first surface interferes with light which entered the plastic, then reflected from the back surface.
- A phase change occurs at the first surface (airplastic) reflection, but not at the second.

Relevant ideas:

- Light reflected from the first surface interferes with light which entered the plastic, then reflected from the back surface.
- A phase change occurs at the first surface (airplastic) reflection, but not at the second.
- The optical path length of light travelling through a medium is the physical length times the refraction index for the medium.

Equations associated with ideas:
optical path length: $2 n d$
phase:

$$
\begin{array}{ll}
\phi_{2}=2 n d \cdot \frac{2 \pi}{\lambda} & \begin{array}{l}
\text { for wave that } \\
\text { reflected inside }
\end{array} \\
\phi_{1}=\pi & \begin{array}{l}
\text { for top-reflected } \\
\text { wave }
\end{array}
\end{array}
$$

interference condition:

$$
\phi_{1}+\phi_{2}=2 m \pi
$$

$$
m=0, \pm 1, \pm 2, \ldots
$$

index of refraction for plastic: $1<n<2$! (water $=1.33$, glass $\sim 1.50)$

Strategy

Strategy

- Light propagates in plastic with speed $\mathrm{v}=\mathrm{c} / \mathrm{n}$.

Strategy

- Light propagates in plastic with speed $v=c / n$.
- The wave reflected from the bottom surface inside the plastic travels 2 d ($\mathrm{d}=$ thickness)

Strategy

- Light propagates in plastic with speed $v=c / n$.
- The wave reflected from the bottom surface inside the plastic travels $2 d$ ($d=$ thickness)
- It interferes with the wave that underwent a phase change (top surface reflection).

Strategy

- Light propagates in plastic with speed $v=c / n$.
- The wave reflected from the bottom surface inside the plastic travels Rd (d=thickness)
- It interferes with the wave that underwent a phase change (top surface reflection).
- The phase difference is then $\pi+\phi$. When this equals an integer multiple of \qquad

Solution

Solution

- $\phi_{1}=\pi ; \quad \phi_{2}=n \cdot 2 d \frac{2 \pi}{\lambda}$.

Solution

- $\phi_{1}=\pi ; \quad \phi_{2}=n \cdot 2 d \frac{2 \pi}{\lambda}$.
- $\phi_{1}+\phi_{2}=\pi+\frac{4 \pi n d}{\lambda}=m \cdot 2 \pi, m=0, \pm 1, \pm 2, .$.

Solution

- $\phi_{1}=\pi ; \quad \phi_{2}=n \cdot 2 d \frac{2 \pi}{\lambda}$.
- $\phi_{1}+\phi_{2}=\pi+\frac{4 \pi n d}{\lambda}=m \cdot 2 \pi, m=0, \pm 1, \pm 2, \ldots$
- $1+\frac{4 n d}{\lambda}=2 m \therefore \frac{4 n d}{\lambda}=2 m-1 \therefore n=(2 m-1) \frac{\lambda}{4 d}$

Solution

- $\phi_{1}=\pi ; \quad \phi_{2}=n \cdot 2 d \frac{2 \pi}{\lambda}$.
- $\phi_{1}+\phi_{2}=\pi+\frac{4 \pi n d}{\lambda}=m \cdot 2 \pi, m=0, \pm 1, \pm 2, .$.
- $1+\frac{4 n d}{\lambda}=2 m \therefore \frac{4 n d}{\lambda}=2 m-1 \therefore n=(2 m-1) \frac{\lambda}{4 d}$
- $d=\frac{1}{2} \lambda(=250 \mathrm{~nm}) \therefore \quad n=(2 m-1) \frac{1}{2}=m-\frac{1}{2}$
$\therefore \quad m=2$ is happening and $n=\frac{3}{2}$
Other m-values are rejected, as they would yield n outside of $1<n<2$. $N B: d=\frac{1}{2} \lambda$ is rather thin!

