PhysicsTutor ${ }^{(3)}$

Fabry-Perot Interferometer

Giordano 25.23

Problem:

- Two parallel glass plates with metallic vapour deposited on the inside surfaces form a multiple-beam interferometer (gap = $3.3 \mu \mathrm{~m}$).
- For nearly-normal incidence, and constructive interference for the waves emitted at the top find all possible λ between 600 and 700 nm .

Relevant ideas:

Relevant ideas:

- Light reflected from the first surface interferes with light which entered the gap, bounced once then exited at the top, and with further bouncing paths.

Relevant ideas:

- Light reflected from the first surface interferes with light which entered the gap, bounced once then exited at the top, and with further bouncing paths.
- A phase change occurs at the first surface (airglass) reflection, and also for a bounce inside.

Relevant ideas:

- Light reflected from the first surface interferes with light which entered the gap, bounced once then exited at the top, and with further bouncing paths.
- A phase change occurs at the first surface (airglass) reflection, and also for a bounce inside.
- The added optical path for each bounce is about 2d (d=gap) for near-normal incidence.

$$
v_{i} \approx 0
$$

$$
\begin{aligned}
& \text { otherwise correct the path length } \\
& \text { using } \cos \vartheta_{i} \text { factor }
\end{aligned}
$$

Equations associated with ideas:

$$
E_{1}(x, t)=E_{0} \sin (\omega t-k x+\phi)=E_{0} \sin \left(\frac{2 \pi t}{T}-\frac{2 \pi x}{\lambda}+\phi\right)
$$

coherent monochromatic Light $=$ transverse $E M$ wave; intensity $\sim E_{0}^{2}$
extra optical path lengths: $\approx 2 d \cdot m$ (air inside the gap) (for m bounces) $\cos \theta_{i}$ is ≈ 1

$$
\begin{aligned}
& \phi_{0}=\pi \quad(\text { air-glass reflection) } \\
& \phi_{1}=\pi+2 d \frac{2 \pi}{\lambda} \quad \begin{array}{l}
\text { first } \\
\text { air-glass reflection at bottom }
\end{array} \\
& \phi_{m}=\pi+2 d \frac{2 \pi}{\lambda} m \quad(+2 \pi(m-1))!
\end{aligned}
$$ e.g., path $m=2$ has 2 additional phase changes from air \rightarrow glass reflections

constructive interference: $\quad \phi_{m}-\phi_{0}=\gamma \cdot 2 \pi \quad j=1,2,3, \ldots$.

Strategy

Strategy

- The phase changes from air-glass surface reflections are the same for each beam.

Strategy

- The phase changes from air-glass surface reflections are the same for each beam.
- The accumulated additional phase for the $\mathrm{m}^{\text {th }}$ beam equals $(4 \pi d / \lambda) \cdot m$

Strategy

- The phase changes from air-glass surface reflections are the same for each beam.
- The accumulated additional phase for the $m^{\text {th }}$ beam equals ___(4 $\pi d / \lambda) \cdot m$
- Constructive interference with beams for $m=1,2, \ldots$, but how intense are they?

Strategy

- The phase changes from air-glass surface reflections are the same for each beam.
- The accumulated additional phase for the $\mathrm{n}^{\text {th }}$ beam equals $(4 \pi d / \lambda) m$
- Constructive interference with beams for $m=1,2, \ldots$, but how intense are they?
- Complementary set of beams out of the bottom surface: e.g., top=bright, bottom=dark

Solution

Solution

$$
\frac{4 \pi d}{\lambda}=j \cdot 2 \pi \quad \gamma=1,2, \ldots \quad \begin{aligned}
& \text { interfere } \\
& m=0 \text { and } m=1
\end{aligned}
$$

Solution

- $\frac{4 \pi d}{\lambda}=j \cdot 2 \pi$
$j=1,2$,
interfere $m=0$ and $m=1$

$$
\therefore \quad d / \lambda=\frac{j}{2} \quad \therefore \quad \lambda_{j}=\frac{2 d}{j} \quad j=1,2, \ldots
$$

Solution
$\frac{4 \pi d}{\lambda}=j \cdot 2 \pi$

$$
j=1,2, \ldots
$$

interfere $m=0$ and $m=1$

$$
\therefore \quad d / \lambda=\frac{j}{2} \quad \therefore \quad \lambda_{j}=\frac{2 d}{j} \quad j=1,2, \ldots
$$

$$
d=3.3 \mu \mathrm{~m}=3300 \mathrm{~nm} \therefore \lambda_{j}=\frac{6600}{j} \therefore \gamma=10 \widehat{=} 660 \mathrm{~nm}
$$

Solution

- $\frac{4 \pi d}{\lambda}=j \cdot 2 \pi \quad j=1,2, \ldots \begin{aligned} & \text { interfere } \\ & m=0 \text { and } m=1\end{aligned}$

$$
\therefore \quad d / \lambda=\frac{j}{2} \quad \therefore \quad \lambda_{j}=\frac{2 d}{j} \quad j=1,2, \ldots
$$

- $d=3.3 \mu \mathrm{~m}=3300 \mathrm{~nm} \therefore \lambda_{j}=\frac{6600}{j} \therefore \gamma=10 \widehat{\varrho} \quad \therefore 60 \mathrm{~nm}$
- $\lambda_{11}=600 \mathrm{~nm}$ and $\lambda_{10}=660 \mathrm{~nm}$ inside $[600,700]$

In $2^{\text {nd }}$ yr optics (course $+l a b$) one proves an important property of multi-beam IF: instead of simple, equally wide bright + dark fringes one obtains narrow super-bright fringes \rightarrow sharpness yields precision.

