PhysicsTutor ${ }^{(6)}$

Interference
Knight 21.23

Problem:

- What is the thinnest film of $\mathrm{MgF}_{2}(\mathrm{n}=1.39)$ on glass that produces a strong reflection for orange light with a wavelength of 600 nm ?

Relevant ideas:

Relevant ideas:

- Normally incident waves: look for constructive interference in reflection.

Relevant ideas:

- Normally incident waves: look for constructive interference in reflection.
- Watch out for phase jumps when light reflects from the air-film, and film-glass interfaces.

Relevant ideas:

- Normally incident waves: look for constructive interference in reflection.
- Watch out for phase jumps when light reflects from the air-film, and film-glass interfaces.
- Find the lowest-order interference. Watch out for the optical path length as opposed to physical path length.

Equations associated with ideas:

$$
E(x, t)=E_{0} \sin \left(\omega t-\frac{2 \pi}{\lambda_{\text {med }}}+\phi\right) ; \lambda_{\text {med }}=\frac{\lambda_{\text {vac }}}{n}
$$

2 light paths at same t, x : phase difference

$$
\begin{gathered}
\Delta \phi=\phi_{2}-\phi_{1}=\frac{2 \pi}{\lambda_{\text {med }}} \Delta x=\frac{2 \pi}{\lambda_{v a c}} \underbrace{\text { differences }}_{\begin{array}{c}
\text { optical path } \\
\text { length } \\
\text { path length }
\end{array}} \begin{array}{c}
\text { physical }
\end{array} \\
\Delta \phi=2 \pi m \quad m=1,2,3, \ldots \text { constructive } \\
\text { interference }
\end{gathered}
$$

Strategy

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Realize that both waves undergo phase jumps upon reflection, so we can ignore them.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Realize that both waves undergo phase jumps upon reflection, so we can ignore them.
- Same arrival time for both paths: find the accumulated phase difference (PD) in space from the optical path length difference.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Realize that both waves undergo phase jumps upon reflection, so we can ignore them.
- Same arrival time for both paths: find the accumulated phase difference (PD) in space from the optical path length difference.
- Constructive interference: $\mathrm{PD}=$ multiple of 2π.

Solution

Solution

- both reflections: phase jump by $\pi \rightarrow$ ignore

Solution

- both reflections : phase jump by $\pi \rightarrow$ ignore
- $\Delta \phi=\frac{2 \pi}{\lambda} n \cdot 2 d=2 \pi m \quad$ with $m=1$ (thinnest)

Solution

$$
\Delta x \approx 2 d
$$

for $\theta_{i} \approx 0 \quad \cos \theta_{i} \approx 1$

- both reflections : phase jump by $\pi \rightarrow$ ignore
- $\Delta \phi=\frac{2 \pi}{\lambda} n \cdot 2 d=2 \pi m^{\prime \prime}$ with $m=1$ (thinnest)

$$
\therefore d=\frac{\lambda}{2 n}=\frac{600}{2 \cdot 1.39} \mathrm{~nm}=216 \mathrm{~nm}
$$

what happens to transmission (at near-normal) incidence at this wavelength? destructive interference.
$Q:$ is the picture used too simple? reflections + (probably) occur!

