PhysicsTutor

Interference
Giordano 25.10

Problem:

- One of the mirrors of a Michelson interferometer is moved a distance of 2.0 mm . Meanwhile, the interference intensity moves through 7,000 dark fringes.
- What is the wavelength of the light?

Relevant ideas:

Relevant ideas:

- Beams are split several times: the beam from the source is split in two, the returning beams from each mirror are also split.

Relevant ideas:

- Beams are split several times: the beam from the source is split in two, the returning beams from each mirror are also split.
- The number of phase jumps is the same for recombining beams. beam 1 at BS and M1 beam z at $M 2$ and $B S$

Relevant ideas:

- Beams are split several times: the beam from the source is split in two, the returning beams from each mirror are also split.
- The number of phase jumps is the same for recombining beams.
- Find the path length difference. Ignore the details about the glass beam splitter (front surface versus back surface reflections).

Equations associated with ideas:

$$
E_{1 / 2}(x, t)=E_{0} \sin \left(\omega t-\frac{2 \pi}{\lambda} x\right)
$$

to be combined at same time t in the same place, but beam 2 accumulated more phase if $x_{2}>x_{1}$:

$$
\begin{aligned}
& \Delta \phi=\frac{2 \pi}{\lambda} \Delta x \quad \text { where } \Delta x=2\left(x_{2}-x_{1}\right) ; \lambda=\lambda_{\text {air }} \\
& \lambda_{\text {air }}=\lambda_{\text {vac }} / n_{\text {air }} n_{\text {air }} \approx 1 \\
& \Delta \phi=(2 m-1) \pi \quad \begin{array}{l}
\text { destructive interference condition } \\
\text { crest meets through } \rightarrow \text { dark }
\end{array} \\
& m=1,2, \ldots \quad
\end{aligned}
$$

Strategy

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Same arrival time for both paths: find the accumulated phase difference (PD) in space from the optical path length difference.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Same arrival time for both paths: find the accumulated phase difference (PD) in space from the optical path length difference.
- Equate the PD to an odd-integer multiple of π for destructive interference.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Same arrival time for both paths: find the accumulated phase difference (PD) in space from the optical path length difference.
- Equate the PD to an odd-integer multiple of π for destructive interference.
- Use the order m=7000 to find λ.

Solution

Solution

- $\Delta \phi=\frac{2 \pi}{\lambda} \cdot 2 \cdot\left(x_{2}-x_{1}\right)=\pi(2 m-1)$

Solution

$$
\begin{aligned}
& \Delta \frac{\Delta \phi=\frac{2 \pi}{\lambda} \cdot 2 \cdot\left(x_{2}-x_{1}\right)=\pi(2 m-1)}{2} \frac{4}{\lambda}=\frac{2 m-1}{x_{2}-x_{1}} \quad \therefore \quad \lambda=\frac{4\left(x_{2}-x_{1}\right)}{2 m-1}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \Delta \phi=\frac{2 \pi}{\lambda} \cdot 2 \cdot\left(x_{2}-x_{1}\right)=\pi(2 m-1) \\
& \frac{4}{\lambda}=\frac{2 m-1}{x_{2}-x_{1}} \therefore \lambda=\frac{4\left(x_{2}-x_{1}\right)}{2 m-1} \\
& \lambda=\frac{8.0 \times 10^{-3} m}{(14,000-1)}=\frac{8.0 \times 10^{-3} m}{14,000}=\frac{8.0}{14} \mu \mathrm{~m}
\end{aligned}
$$

Solution

$$
\begin{aligned}
\Delta \phi & =\frac{2 \pi}{\lambda} \cdot 2 \cdot\left(x_{2}-x_{1}\right)=\pi(2 m-1) \\
\frac{4}{\lambda} & =\frac{2 m-1}{x_{2}-x_{1}} \therefore \lambda=\frac{4\left(x_{2}-x_{1}\right)}{2 m-1} \\
\lambda & =\frac{8.0 \times 10^{-3} m}{14,000-1}=\frac{8.0 \times 10^{-3} m}{14,000}=\frac{8.0}{14} \mu m
\end{aligned}
$$

$$
\lambda=0.571 \mu \mathrm{~m} \rightarrow 570 \mathrm{~nm} \rightarrow \text { yellow light }
$$

Our calculation was based upon the path length difference between arms 1 and 2 . The problem did not state that the path length was the same initially (constructive interference), but fringes appear/disappear proportional to the change in path length.

