PhysicsTutor ${ }^{(4)}$

Thin-film Interference

Giordano 25.16

Problem:

- An extremely thin film of soapy water ($\mathrm{n}=1.35$) sits on top of a flat glass plate with $\mathrm{n}=1.50$. The soap film has an orange-red colour when viewed at normal incidence.
- What is the thickness of the film? The wavelength of the orange-red light is 600 nm .

Relevant ideas:

Relevant ideas:

- Constructive interference of light reflected from the top surface of the film with light reflected from the film-glass interface.

Relevant ideas:

- Constructive interference of light reflected from the top surface of the film with light reflected from the film-glass interface.
- The number of phase jumps is the same for recombining beams (air to soap and soap to glass).

Relevant ideas:

- Constructive interference of light reflected from the top surface of the film with light reflected from the film-glass interface.
- The number of phase jumps is the same for recombining beams (air to soap and soap to glass).
- Find the optical path length difference between the two beams, phase shift of 2π.

Equations associated with ideas:

$$
E_{1 / 2}(x, t)=E_{0} \sin \left(\omega t-\frac{2 \pi}{\lambda} x+\phi_{1 / 2}\right)
$$

same $x_{1} t: \phi_{1}=0, \phi_{2}=\frac{2 \pi}{\lambda_{\text {med }}} \Delta x=\frac{2 \pi}{\lambda_{\mathrm{vac}}} n \Delta x$
ϕ_{2} is additional accumulated phase

$$
\begin{aligned}
& \Delta x=\frac{2 d}{\cos \theta} \simeq 2 d \\
& \Delta \phi=\phi_{2}-\phi_{1}=\frac{2 \pi n}{\lambda_{\text {vac }}} \Delta x=2 \pi \quad\left(\begin{array}{l}
\text { chose } \\
m=1
\end{array}\right. \\
& \text { for thinnest } \\
& \text { film) }
\end{aligned}
$$

Strategy

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Same arrival time for both paths: find the accumulated phase difference (PD) in space from the optical path length difference.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Same arrival time for both paths: find the accumulated phase difference (PD) in space from the optical path length difference.
- Equate the PD to 2π for the first constructive interference, since the film is ultra-thin.

Strategy

- Draw the rays which indicate the paths taken by the interfering waves.
- Same arrival time for both paths: find the accumulated phase difference (PD) in space from the optical path length difference.
- Equate the PD to 2π for the first constructive interference, since the film is ultra-thin.
- Destructive IF from complementary colour?

Solution

Solution

- $\Delta \phi=\frac{2 \pi}{\lambda} n_{\text {film }} \cdot 2 d=2 \pi$

Solution

$$
\begin{aligned}
\Delta \phi & =\frac{2 \pi}{\lambda} n_{\text {film }} \cdot 2 d=2 \pi \\
d & =\frac{\lambda}{2 n_{\text {film }}}=\frac{600}{2 \cdot 1.35} \mathrm{~nm}=220 \mathrm{~nm}
\end{aligned}
$$

Solution

- $\Delta \phi=\frac{2 \pi}{\lambda} n_{\text {film }} \cdot 2 d=2 \pi$

$$
d=\frac{\lambda}{2 n_{\text {film }}}=\frac{600}{2 \cdot 1.35} \mathrm{~nm}=220 \mathrm{~nm}
$$

$d=0.2 \mu \mathrm{~m}$ is thin. It could also be a multiple.

Solution

- $\Delta \phi=\frac{2 \pi}{\lambda} n_{\text {film }} \cdot 2 d=2 \pi$
$d=\frac{\lambda}{2 n_{\text {film }}}=\frac{600}{2 \cdot 1.35} \mathrm{~nm}=220 \mathrm{~nm}$
- $d=0.2 \mu \mathrm{~m}$ is thin. It could also be a multiple.
- Note: our colour vision is not only susceptible to beams of light of a given wavelength. Missing some parts of the wavelength range (complementary colour) does also lead to colour perception.

