PhysicsTutor ${ }^{(3)}$

Polarizer

Serway 38.47

Problem:

- Construct a device that rotates the axis of linearly polarized light by 45 degrees from a sequence of ideal polarizers (no loss).
- Each polarizer has an axis that makes the same angle with the adjacent polarizer axis.
- How many polarizers do you need, and what is the angle between adjacent polarizer axes for an intensity reduction of at most 10% ?

Relevant ideas:

Relevant ideas:

- A polarizer illuminated by LP light of intensity I_{0} with a relative angle of φ between polarizer axis and original polarization direction yields: $\mathrm{I}_{0} \cos ^{2}(\varphi)$ intensity with LP along its axis.

Relevant ideas:

- A polarizer illuminated by LP light of intensity I_{0} with a relative angle of φ between polarizer axis and original polarization direction yields: $\mathrm{I}_{0} \cos ^{2}(\varphi)$ intensity with LP along its axis.
- A single polarizer at $\varphi=45^{\circ}$ would cut I_{0} in half.

Relevant ideas:

- A polarizer illuminated by LP light of intensity I_{0} with a relative angle of φ between polarizer axis and original polarization direction yields: $\mathrm{I}_{0} \cos ^{2}(\varphi)$ intensity with LP along its axis.
- A single polarizer at $\varphi=45^{\circ}$ would cut I_{0} in half.
- A sequence of polarizers will work, since $\cos ^{2}(\varphi) \approx 1$ for small φ.

Equations associated with ideas:
Polarizer

$$
I_{0} \cos ^{2} \varphi=E_{0}^{2} \cos ^{2} \varphi
$$

= transmitted intensity of an ideal polarizer
(a) $p=0$ perfect transmission)

$$
\begin{aligned}
& n \text { polarizes, } \varphi_{\text {tot }}=\frac{\pi}{4} \text { desired } \therefore \underbrace{n}_{\text {for each }}=\frac{45^{\circ}}{n} \\
& I_{0}\left(\cos ^{2} \frac{45^{\circ}}{n}\right) \cdot\left(\cos ^{2} \frac{45^{\circ}}{n}\right) \cdots\left(\cos ^{2} \frac{45^{\circ}}{n}\right)=I_{0} \cos ^{2 n} \varphi
\end{aligned}
$$

$\cos ^{2 n}\left(\frac{\pi}{4 n}\right) \geqslant \frac{9}{10}<\begin{aligned} & \text { transcendental equation } \\ & \text { canst solve, but }\end{aligned}$ can tabulate LHS

Strategy

Strategy

- For n polarizers the angle $\varphi=45 / n$.

Strategy

- For n polarizers the angle $\varphi=45 / n$.
- The intensity attenuation: $\left[\cos ^{2}(\varphi)\right]^{n}=\cos ^{2 n}(\varphi)$

Strategy

- For n polarizers the angle $\varphi=45 / n$.
- The attenuation factor: $\left[\cos ^{2}(\varphi)\right]^{n}=\cos ^{2 n}(\varphi)$
- We are looking for the smallest n for which the attenuation factor reaches 0.9 , i.e., the loss is about 10%.

Strategy

- For n polarizers the angle $\varphi=45 / n$.
- The attenuation factor: $\left[\cos ^{2}(\varphi)\right]^{n}=\cos ^{2 n}(\varphi)$
- We are looking for the smallest n for which the attenuation factor reaches 0.9, i.e., the loss is about 10%.
- The inequality is unlikely to be solvable in closed form, we need to generate a table of values for $n=1,2,3$...

Solution

Solution

- LHS $=\cos ^{2 n}\left(\frac{45^{\circ}}{n}\right) ;$ RHS $=0.9$

Solution

- LHS $=\cos ^{2 n}\left(\frac{45^{\circ}}{n}\right) ;$ RHS $=0.9$
$\operatorname{LHS}(n=1)=\frac{1}{2}<$ RHS

Solution

LHS $=\cos ^{2 n}\left(\frac{45^{\circ}}{n}\right) ;$ RHS $=0.9$

$\operatorname{LHS}(n=1)=\frac{1}{2}$	$<$ RHS					
n	2	3	4	5	6	7
LHS	.7286	.8122	.8562	.8835	.9020	.9155

Solution

DHS $=\cos ^{2 n}\left(\frac{45^{\circ}}{n}\right) ;$ RHS $=0.9$
$\operatorname{LHS}(n=1)=\frac{1}{2}<$ RHS

n	2	3	4	5	6	7
LHS	.7286	.8122	.8562	.8835	.9020	.9155

$$
n=6: \varphi=\frac{45^{\circ}}{6}=7.5^{\circ}
$$

Q: can we figure out what happens for a real polarizer?
$\varepsilon I_{0} \cos ^{2} \varphi$ where $\varepsilon=0.8$?
\rightarrow add ε^{n} to the mix, and an ideal n-value may emerge! of course, the attenuation will be big!

