PhysicsTutor

Polarizer Serway 38.47

Problem:

- Construct a device that rotates the axis of linearly polarized light by 45 degrees from a sequence of ideal polarizers (no loss).
- Each polarizer has an axis that makes the same angle with the adjacent polarizer axis.
- How many polarizers do you need, and what is the angle between adjacent polarizer axes for an intensity reduction of at most 10% ?

• A polarizer illuminated by LP light of intensity I_0 with a relative angle of ϕ between polarizer axis and original polarization direction yields: $I_0 \cos^2(\phi)$ intensity with LP along its axis.

- A polarizer illuminated by LP light of intensity I_0 with a relative angle of ϕ between polarizer axis and original polarization direction yields: $I_0 \cos^2(\phi)$ intensity with LP along its axis.
- A single polarizer at ϕ =45° would cut I₀ in half.

- A polarizer illuminated by LP light of intensity I_0 with a relative angle of ϕ between polarizer axis and original polarization direction yields: $I_0 \cos^2(\phi)$ intensity with LP along its axis.
- A single polarizer at ϕ =45° would cut I₀ in half.
- A sequence of polarizers will work, since cos²(φ)≈1 for small φ.

Equations associated with ideas:

n polarizers,
$$\rho_{tot} = \frac{\pi}{4}$$
 desired $\therefore \varphi = \frac{45^{\circ}}{n}$
for each

$$I_0\left(\cos^2\frac{45^\circ}{h}\right)\cdot\left(\cos^2\frac{45^\circ}{h}\right)\cdots\left(\cos^2\frac{45^\circ}{h}\right) = I_0\cos^2\eta$$

• For n polarizers the angle φ =45/n.

- For n polarizers the angle φ =45/n.
- The intensity attenuation: [cos²(φ)]ⁿ =cos²ⁿ(φ)

- For n polarizers the angle φ =45/n.
- The attenuation factor: $[\cos^2(\phi)]^n = \cos^{2n}(\phi)$
- We are looking for the smallest n for which the attenuation factor reaches 0.9, i.e., the loss is about 10% .

- For n polarizers the angle φ =45/n.
- The attenuation factor: [cos²(φ)]ⁿ =cos²ⁿ(φ)
- We are looking for the smallest n for which the attenuation factor reaches 0.9, i.e., the loss is about 10%.
- The inequality is unlikely to be solvable in closed form, we need to generate a table of values for n=1,2,3...

• LHS = $\cos^{2n}\left(\frac{4S^{\circ}}{n}\right)$; RHS = 0.9

• LHS = $\cos^{2n}\left(\frac{4S^{\circ}}{n}\right)$; RHS = 0.9

•	LHS(n=1)	$=\frac{1}{2}$	< RHS
---	----------	----------------	-------

• LHS =
$$\cos^{2n}\left(\frac{4S^{\circ}}{n}\right)$$
; RHS = 0.9

• LHS =
$$\cos^{2n}\left(\frac{4S^{\circ}}{n}\right)$$
; RHS = 0.9

• LHS
$$(n=1) = \frac{1}{2}$$
 < RHS
• $\frac{n}{LHS} \frac{2}{.7286} \frac{3}{.8122} \frac{4}{.8562} \frac{5}{.8835} \frac{6}{.9020} \frac{7}{.9155}$
• $n = 6 : \varphi = \frac{45^{\circ}}{6} = 7.5^{\circ}$
Q: can we figure out what happens for a real
polarizer? $E_{T_0} \cos^2 \varphi$ where $E = 0.8$?
 $\rightarrow add E^n$ to the mix, and an ideal n-value
may emerge! Of course, the attenuation will be big