PhysicsTutor

Polarizer

Problem:

- A linearly polarized light source of unknown polarization direction illuminates a vertical LP, followed by another LP whose axis is rotated by 60 degrees with respect to the first.
- The observed intensity equals $0.15 \mathrm{I}_{0}$, where I_{0} is the intensity of the light source.
- By which angle φ is the source polarization direction rotated from the vertical LP axis?

Relevant ideas:

Relevant ideas:

- A polarizer illuminated by LP light of intensity I_{0} with a relative angle of φ between polarizer axis and original polarization direction yields: $\mathrm{I}_{0} \cos ^{2}(\varphi)$ intensity with LP along its axis.

Relevant ideas:

- A polarizer illuminated by LP light of intensity I_{0} with a relative angle of φ between polarizer axis and original polarization direction yields: $\mathrm{I}_{0} \cos ^{2}(\varphi)$ intensity with LP along its axis.
- After the vertical LP we get $\mathrm{I}_{0} \cos ^{2}(\varphi)$.

Relevant ideas:

- A polarizer illuminated by LP light of intensity I_{0} with a relative angle of φ between polarizer axis and original polarization direction yields: $\mathrm{I}_{0} \cos ^{2}(\varphi)$ intensity with LP along its axis.
- After the vertical LP we get $\mathrm{I}_{0} \cos ^{2}(\varphi)$.
- The second polarizer reduces the intensity by $\cos ^{2}(\theta)$.

Equations associated with ideas:

$$
I_{0} \cos ^{2} \varphi=E_{0}^{2} \cos ^{2} \varphi
$$

= transmitted intensity of an ideal polarizer
(a) $\varphi=0$ perfect transmission)

In this problem: I'Polarizer axis is vertical, light source is linearly polarized with un known orientation φ

$$
I_{0}^{\text {observed }}=0.15 I_{0}=I_{0} \cos ^{2} \varphi \cos ^{2} \theta
$$

where $\theta=60^{\circ}=\pi / 3$

Strategy

Strategy

- The attenuation factor is the result of two cosine-squared factors, one known, one unknown.

Strategy

- The attenuation factor is the result of two cosine-squared factors, one known, one unknown.
- The known factor is: $\cos ^{2}(\pi / 3)$; the unknown: $\cos ^{2}(\varphi)$

Strategy

- The attenuation factor is the result of two cosine-squared factors, one known, one unknown.
- The known factor is: $\cos ^{2}(\pi / 3)$; the unknown: $\cos ^{2}(\varphi)$
- Isolate φ in $\cos ^{2}(\varphi) \cos ^{2}(\pi / 3)=0.15$.

Strategy

- The attenuation factor is the result of two cosine-squared factors, one known, one unknown.
- The known factor is: $\cos ^{2}(\pi / 3)$; the unknown: $\cos ^{2}(\varphi)$
- Isolate φ in $\cos ^{2}(\varphi) \cos ^{2}(\pi / 3)=0.15$.
- Note that $\cos ^{2}(\pi / 3)=1 / 4$, and, thus, $\cos ^{2}(\varphi)=0.6$.

Solution

Solution

- $x_{0} \cos ^{2} \varphi \overbrace{\cos ^{2}\left(\frac{\pi}{3}\right)}^{1 / 4}=0.15 I_{0}$

Solution
$\dot{x}_{0} \cos ^{2} \varphi \overbrace{\cos ^{2}\left(\frac{\pi}{3}\right)}^{1 / 4}=0.15 \tilde{I}_{0}$

$$
\cos ^{2} \varphi=4 \cdot 0.15=0.60
$$

Solution
$\tilde{x}_{0} \cos ^{2} \varphi \overbrace{\cos ^{2}\left(\frac{\pi}{3}\right)}^{1 / 4}=0.15 \tilde{I}_{0}$
$\cos ^{2} \varphi=4 \cdot 0.15=0.60$
$\cos \varphi=\sqrt{0.60}=0.775$

Solution
$\underline{X_{0}} \cos ^{2} \varphi \overbrace{\cos ^{2}\left(\frac{\pi}{3}\right)}^{1 / 4}=0.15 \pi_{0}$
$\cos ^{2} \varphi=4 \cdot 0.15=0.60$
$\cos \varphi=\sqrt{0.60}=0.775$
$\varphi=0.685 \mathrm{rad}=39^{\circ}$
Note: due to the $\cos ^{2} \varphi$ behaviour we can't distinguish which way $(\pm \varphi)$ the orientation is with respect to the vertical (1st polarizer alignment).

