PhysicsTutor

Polarizer

Problem:

- A linearly polarized light source of unknown polarization direction illuminates a vertical LP, followed by another LP whose axis is rotated by 60 degrees with respect to the first.
- The observed intensity equals 0.15 I_0 , where I_0 is the intensity of the light source.
- By which angle ϕ is the source polarization direction rotated from the vertical LP axis?

• A polarizer illuminated by LP light of intensity I_0 with a relative angle of ϕ between polarizer axis and original polarization direction yields: $I_0 \cos^2(\phi)$ intensity with LP along its axis.

- A polarizer illuminated by LP light of intensity I_0 with a relative angle of ϕ between polarizer axis and original polarization direction yields: $I_0 \cos^2(\phi)$ intensity with LP along its axis.
- After the vertical LP we get $I_0 \cos^2(\phi)$.

- A polarizer illuminated by LP light of intensity I_0 with a relative angle of ϕ between polarizer axis and original polarization direction yields: $I_0 \cos^2(\phi)$ intensity with LP along its axis.
- After the vertical LP we get $I_0 \cos^2(\phi)$.
- The second polarizer reduces the intensity by $\cos^2(\theta)$.

Equations associated with ideas:

Perpendicular
Perpendicular
Axis
Axis
Axis
Do
$$\cos^2 \varphi = E_0^2 \cos^2 \varphi$$

 $is cked$
In magnitude
In this problem: I Polarizer axis is vertical, light source
is linearly polarized with Un Known orientation φ

$$I_{o}^{observed} = 0.15 I_{o} = I_{o} \cos^{2} \varphi \cos^{2} \vartheta$$

where $\vartheta = 60^{\circ} = \frac{\pi}{3}$

 The attenuation factor is the result of two cosine-squared factors, one known, one unknown.

- The attenuation factor is the result of two cosine-squared factors, one known, one unknown.
- The known factor is: cos²(π/3); the unknown:
 cos²(φ)

- The attenuation factor is the result of two cosine-squared factors, one known, one unknown.
- The known factor is: cos²(π/3); the unknown:
 cos²(φ)
- Isolate φ in $\cos^2(\varphi) \cos^2(\pi/3) = 0.15$.

- The attenuation factor is the result of two cosine-squared factors, one known, one unknown.
- The known factor is: cos²(π/3); the unknown:
 cos²(φ)
- Isolate φ in $\cos^2(\varphi) \cos^2(\pi/3) = 0.15$.
- Note that cos²(π/3) = ¼, and, thus, cos²(φ)=0.6.

Solution

Solution

1/4 $I_{0} \cos^{2} \varphi \cos^{2} \left(\frac{\Lambda}{3}\right) = 0.15 I_{0}$

Solution

1/4 $I_0 \cos^2 \varphi \cos^2 \left(\frac{\pi}{3}\right) = 0.15 I_0$

 $\cos^2 \varphi = 4.0.15 = 0.60$

Solution $\frac{1/4}{X_{0}} \cos^{2}(\frac{\pi}{3}) = 0.15 \frac{1}{X_{0}}$

 $\cos \varphi = \sqrt{0.60} = 0.775$

distinguish which way $(\pm \varphi)$ the orientation is with respect to the vertical (1st polarizer alignment).