PhysicsTutor

Polarizer

Giordano 23.39

Problem:

- Unpolarized light with electric field amplitude $0.25 \mathrm{~V} / \mathrm{m}$ is incident on a polarizer.
- Calculate the electric field amplitude of the transmitted light.

Relevant ideas:

Relevant ideas:

- Malus' law: intensity of light transmitted by an ideal polarizer from a polarized light source equals $I_{0} \cos ^{2}(\varphi)$ where φ is the angle between the light polarization and the polarizer axis.

Relevant ideas:

- Malus' law: intensity of light transmitted by an ideal polarizer from a polarized light source equals $I_{0} \cos ^{2}(\varphi)$ where φ is the angle between the light polarization and the polarizer axis.
- Unpolarized light is a superposition of light with all polarization directions present. Malus' law to be used for all components of the light.

Relevant ideas:

- Malus' law: intensity of light transmitted by an ideal polarizer from a polarized light source equals $I_{0} \cos ^{2}(\varphi)$ where φ is the angle between the light polarization and the polarizer axis.
- Unpolarized light is a superposition of light with all polarization directions present. Malus' law to be used for all components of the light.
- Intensity is prop. to E field strength squared.

Equations associated with ideas:

Malus:

$$
\begin{aligned}
& I(\varphi)=I_{0} \cos ^{2} \varphi \\
& E(\varphi)=E_{0} \cos \varphi
\end{aligned}
$$

Allow all orientations φ
Average $I(\varphi)$ over φ :

$$
\begin{aligned}
& I_{\text {arg }}=\frac{1}{\pi} \int_{0}^{\pi} d \varphi I(\varphi)=\frac{I_{0}}{\pi} \int_{0}^{\pi} \underbrace{\cos ^{2} \varphi}_{=\frac{1}{2}(1+\cos 2 \varphi)} d \varphi=\frac{I_{0}}{2 \pi}\left(\int_{0}^{\pi} d \varphi+\int_{0}^{\pi} \cos 2 \varphi d \varphi\right) \\
& \text { average definition } \\
& \cos _{4}^{2} \varphi \text { box } \\
& \text { divible } \\
& \text { base length } \\
& \text { to set } \square \text { height } \\
& \text { from area } \\
& \text { or "see if" by looking } \\
& \text { at a careful graph, }
\end{aligned}
$$

Strategy

Strategy

- Estimate the transmitted intensity for each component (pick a linear polarization out of the random sample, it is characterized by φ).

Strategy

- Estimate the transmitted intensity for each component (pick a linear polarization out of the random sample, it is characterized by φ).
- The projection of this component onto the polarizer axis is $\mathrm{E}_{0} \cos (\varphi)$.

Strategy

- Estimate the transmitted intensity for each component (pick a linear polarization out of the random sample, it is characterized by φ).
- The projection of this component onto the polarizer axis is $\mathrm{E}_{0} \cos (\varphi)$.
- Average the intensity $\mathrm{I}(\varphi)=\mathrm{E}_{0}^{2} \cos ^{2}(\varphi)$ over all orientations φ.

Strategy

- Estimate the transmitted intensity for each component (pick a linear polarization out of the random sample, it is characterized by φ).
- The projection of this component onto the polarizer axis is $\mathrm{E}_{0} \cos (\varphi)$.
- Average the intensity $\mathrm{I}(\varphi)=\mathrm{E}_{0}{ }^{2} \cos ^{2}(\varphi)$ over all orientations φ.
- Take the root to obtain the E field strength.

Solution

Solution

- $E_{0}=0.25 \frac{\mathrm{~V}}{\mathrm{~m}} \rightarrow I_{0} \sim 0.25^{2}=0.0625$

Solution

- $E_{0}=0.25 \frac{\mathrm{~V}}{\mathrm{~m}} \rightarrow I_{0} \sim 0.25^{2}=0.0625$
- $I_{\text {avg polarizer }}^{\text {after }}=\frac{I_{0}}{2} \sim 0.03125$

Solution

- $E_{0}=0.25 \frac{\mathrm{~V}}{\mathrm{~m}} \rightarrow I_{0} \sim 0.25^{2}=0.0625$
- $I_{\text {avg }}^{\text {afteranerer }}=\frac{I_{0}}{2} \sim 0.03125$
- $E^{\text {after polarizer }} \sim \sqrt{\frac{y_{0}}{2}}=0.177 \frac{\mathrm{~V}}{\mathrm{~m}}=0.18 \frac{\mathrm{~V}}{\mathrm{~m}}$

Solution

- $E_{0}=0.25 \frac{\mathrm{~V}}{\mathrm{~m}} \rightarrow \mathrm{I}_{0} \sim 0.25^{2}=0.0625$
after polarizer
$I_{\text {avg }}^{\text {after polarizer }}=\frac{T_{0}}{2} \sim 0.03125$
$E^{\text {after polarizer }} \sim \sqrt{\frac{I_{0}}{2}}=0.177 \frac{\mathrm{~V}}{\mathrm{~m}}=0.18 \frac{\mathrm{~V}}{\mathrm{~m}}$
The polarizes is NOT selecting a subset of wares with \vec{E} aligned with its axis. All but the perpendicular \vec{E}-directions do contribute. That we obtain half the original intensity for this polarizer orientation, and another half if the polarizer were rotated by $\pi / 2$ should make sense.

