PhysicsTutor ${ }^{(6)}$

Standing wave on a string combined with sound.
 Knight, 21.37

Problem:

- A beautiful note from a violin reaches your ear with wavelength 39.1 cm .
- The room is warm and the speed of sound is $344 \mathrm{~m} / \mathrm{s}$.
- If the tension in the string is 150 N , and the linear density of the string is $0.600 \mathrm{~g} / \mathrm{m}$, how long is the vibrating section of the violin string?

Relevant ideas:

Relevant ideas:

- Standing waves on a string of length L.

Relevant ideas:

- Standing waves on a string of length L.
- Need the fundamental ($n=1$) presumably.

Relevant ideas:

- Standing waves on a string of length L.
- Need the fundamental ($n=1$) presumably.
- Frequency of sound wave equals string frequency. Wavelengths are different, since propagation speeds are different.

Relevant ideas:

- Standing waves on a string of length L.
- Need the fundamental ($n=1$) presumably.
- Frequency of sound wave equals string frequency. Wavelengths are different, since propagation speeds are different.
- String: wave propagation speed is obtained from mass density (given) and tension force (given)

Equations associated with ideas:
sound: $v_{s}=344 \mathrm{~m} / \mathrm{s}\left(T>20^{\circ} \mathrm{C}\right) ; v_{s}=\lambda_{s} \cdot f$ string: $v_{w}=\sqrt{\frac{F_{t}}{\mu}} ; \mu=\frac{M}{L} ; v_{w}=\lambda_{s} \cdot f$
$\begin{aligned} & \text { Standing } \\ & \text { wave: }\end{aligned} \lambda_{s} \rightarrow \lambda_{n}=\frac{2 L}{n} \quad n=1,2,3, \ldots$

Strategy

Strategy

- Obtain the frequency from $f=v_{s} / \lambda_{s}$ and the known wavelength of the sound wave

Strategy

- Obtain the frequency from and the known wavelength of the sound wave
- We know the propagation speed on the string, and can find the wavelength from the frequency $\lambda_{1}=v_{w} f$

Strategy

- Obtain the frequency from and the known wavelength of the sound wave
- We know the propagation speed on the string, and can find the wavelength from the frequency
- From the standing-wave relation $\lambda_{1}=\frac{2 L}{1}$ we find for $\mathrm{n}=1$ (fundamental) the string length L

Solution

Solution
$f=v_{s} / \lambda_{s}=\frac{344}{0.391} \mathrm{~Hz}=879.8 \mathrm{~Hz}$

Solution

- $f=v_{s} / \lambda_{s}=\frac{344}{0.391} \mathrm{~Hz}=879.8 \mathrm{~Hz}^{2}$
- $v_{w}=\sqrt{\frac{F_{t}}{\mu}}=\sqrt{\frac{150}{0.6 \times 10^{-3}}}=500 \mathrm{~m} / \mathrm{s}$

Solution

$$
f=v_{s} / \lambda_{s}=\frac{344}{0.391} \mathrm{~Hz}=879.8 \mathrm{~Hz}
$$

$$
v_{w}=\sqrt{\frac{F_{t}}{\mu}}=\sqrt{\frac{150}{0.6 \times 10^{-3}}}=500 \mathrm{~m} / \mathrm{s}
$$

$$
\lambda_{1}=\frac{v_{w}}{f}=\frac{500}{879.8} \mathrm{~m}=0.5683 \mathrm{~m}
$$

Solution

$$
\begin{aligned}
& f=v_{s} / \lambda_{s}=\frac{344}{0.391} \mathrm{~Hz}_{2}=879.8 \mathrm{~Hz} \\
& v_{w}=\sqrt{\frac{F_{t}}{\mu}}=\sqrt{\frac{150}{0.6 \times 10^{-3}}}=500 \mathrm{~m} / \mathrm{s} \\
& \lambda_{1}=\frac{v_{w}}{f}=\frac{500}{879.8} \mathrm{~m}=0.5683 \mathrm{~m} \\
& \lambda_{1}=\frac{2 L}{1} \quad \therefore L=\frac{\lambda_{1}}{2}=0.284 \mathrm{~m}=28.4 \mathrm{~cm}
\end{aligned}
$$

\rightarrow Frequency is what the longitudinal travelling sound wave and the transverse standing wave have in common. \rightarrow The fundamental $(n=1)$ usually dominates.

