PhysicsTutor ${ }^{(6)}$

Standing wave on a string combined with sound.
 Knight, 21.38

Problem:

- A violinist places her finger so that the vibrating part of the $1.0 \mathrm{~g} / \mathrm{x} / \mathrm{m}$ string has a length of 30 cm , then draws the bow across it.
- A listener in a $20^{\circ} \mathrm{C}$ room hears a note with a wavelength of 40 cm .
- What is the tension in the string?

Relevant ideas:

Relevant ideas:

- Standing waves on a string of length L.

Relevant ideas:

- Standing waves on a string of length L.
- Need the fundamental ($n=1$) presumably.

Relevant ideas:

- Standing waves on a string of length L.
- Need the fundamental ($n=1$) presumably.
- Frequency of sound wave equals string frequency. Wavelengths are different, since propagation speeds are different.

Relevant ideas:

- Standing waves on a string of length L.
- Need the fundamental ($n=1$) presumably.
- Frequency of sound wave equals string frequency. Wavelengths are different, since propagation speeds are different.
- String: wave propagation speed is related to mass density (given) and tension force (wanted)

Equations associated with ideas:
string:

$$
\begin{aligned}
& v_{w}=\sqrt{\frac{F_{s}}{\mu}} ; \mu=\frac{M}{L} \\
& \lambda_{s t r} \cdot f=v_{w} ; \\
& \lambda_{n}=\frac{2 L}{n}, \quad n=1,2, \ldots \quad \begin{array}{l}
\text { standing } \\
\text { wave modes }
\end{array}
\end{aligned}
$$

sound

$$
\begin{aligned}
& v_{s}=343 \frac{\mathrm{~m}}{\mathrm{~s}} \text { a } T=20^{\circ} \mathrm{C} \\
& \lambda_{s} \cdot f=v_{S}
\end{aligned}
$$

Strategy

Strategy

- To get the tension force from $\quad v_{s+r}=\sqrt{\frac{F_{t}}{\mu}}$ we need the propagation speed on the string

Strategy

- To get the tension force from we need the propagation speed on the string
- This we will get from the known wavelength on the string $\lambda_{\perp} \cdot f=v_{\text {str }}$ and from the frequency determined by the sound wave

Strategy

- To get the tension force from we need the propagation speed on the string
- This we will get from the known wavelength on the string ___ and from the frequency determined by the sound wave
- The frequency of the sound wave we find from $v_{s}=\lambda_{s} \cdot f$

Solution

Solution

$$
f=\frac{v_{s}}{\lambda_{s}}=\frac{343}{0.4} \frac{1}{s}=857.5 \mathrm{~Hz}
$$

Solution

- $f=\frac{v_{s}}{\lambda_{s}}=\frac{343}{0.4} \frac{1}{s}=857.5 \mathrm{~Hz}$
- $\lambda_{1}=2 L=2 \cdot 0.3 \mathrm{~m}=0.6 \mathrm{~m}$

Solution
$f=\frac{v_{s}}{\lambda_{s}}=\frac{343}{0.4} \frac{1}{s}=857.5 \mathrm{~Hz}$
$\lambda_{1}=2 L=2 \cdot 0.3 \mathrm{~m}=0.6 \mathrm{~m}$

- $v_{\text {str }}=\lambda_{1} f=0.6 \cdot 857.5 \frac{\mathrm{~m}}{\mathrm{~s}}=514.5 \frac{\mathrm{~m}}{\mathrm{~s}}$

Solution

$$
\begin{aligned}
& f=\frac{v_{s}}{\lambda_{s}}=\frac{343}{0.4} \frac{1}{\mathrm{~s}}=857.5 \mathrm{~Hz} \\
& \hline \lambda_{1}=2 \mathrm{~L}=2 \cdot 0.3 \mathrm{~m}=0.6 \mathrm{~m} \\
& \hline v_{s t r}=\lambda_{1} f=0.6 \cdot 857.5 \frac{\mathrm{~m}}{\mathrm{~s}}=514.5 \mathrm{~m} \\
& \hline v_{\text {str }}^{2}=\frac{F_{t}}{\mu} \therefore F_{t}=\mu v_{s t r}^{2}=10^{-3} \cdot 2.65 \cdot 10^{5} \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~m}} \mathrm{~m}^{2} \\
& =2.65 \cdot 10^{2} \mathrm{~N}=265 \mathrm{~N}
\end{aligned}
$$

- reasonable? \approx weight of 27 kg mass \rightarrow substantid
- Note: $\lambda_{s} \neq \lambda_{s t r}$, but $f_{s}=f_{s t r}$ why? Sound board of

