PhysicsTutor

Standing wave mode on a string.
Young \& Freedman, 15.47

Problem:

- A guitar string of length 63.5 cm is tuned to play the B 3 note $(245 \mathrm{~Hz})$ as a fundamental.
- What is the speed of transverse waves on the string?
- The tension is increased by 1%. Which frequency is obtained?

Relevant ideas:

Relevant ideas:

- Standing wave on a string of length L.

Relevant ideas:

- Standing waves on a string of length L.
- First harmonic: $\mathrm{n}=1$.

Relevant ideas:

- Standing wave on a string of length L.
- First harmonic: $\mathrm{n}=1$.
- Propagation speed depends on tension and on linear mass density.

Relevant ideas:

- Standing wave on a string of length L.
- First harmonic: $\mathrm{n}=1$.
- Propagation speed depends on tension and on linear mass density.
- Tension force change implies propagation speed change. Wavelength remains the same, but frequency changes.

Equations associated with ideas:

$$
\begin{aligned}
& v_{w}=\lambda_{s} \cdot f \quad \lambda_{n}=\frac{2 L}{n} \quad \text { with } n=1 \\
& v_{w}=\sqrt{\frac{F_{t}}{\mu}} \quad \mu=\frac{M}{L} \\
& \frac{\Delta F_{t}}{F_{t}}=1 \% \quad \therefore \quad \frac{\Delta v_{w}}{v_{w}}=0.5 \% \quad \begin{array}{l}
\text { solution } \\
\text { ideas } \\
\text { for port (b) }
\end{array} \\
& \therefore \frac{\Delta f}{f} \sim \frac{\Delta v_{w}}{v_{w}} \sim 0.5 \%
\end{aligned}
$$

(x) $\sqrt{x+\Delta x}=\sqrt{x} \sqrt{1+\frac{\Delta x}{x}}=\sqrt{x}\left(1+\frac{1}{2} \frac{\Delta x}{x}+\ldots\right)=\sqrt{x}+\frac{1}{2} \frac{\Delta x}{\sqrt{x}}+$

Strategy

Strategy

- Given $L, n=1$ we find the wavelength $\lambda_{1}=2 L$

Strategy

- Given $L, n=1$ we find the wavelength
- From wavelength and frequency we find the propagation speed $\quad v_{w}=\lambda_{1} \cdot f_{1}$

Strategy

- Given $L, n=1$ we find the wavelength
- From wavelength and frequency we find the propagation speed
- The tension force increase results in an increase of the propagation speed $v_{w}=\sqrt{F_{t}} /$ not linear, but $\sim \sqrt{F_{t}}$

Strategy

- Given $L, n=1$ we find the wavelength
- From wavelength and frequency we find the propagation speed
- The tension force increase results in an increase of the propagation speed not linear, but \qquad
- The frequency change is proportional to the propagation speed change, since $f_{1}=v_{w} / \lambda_{1}$

Solution

Solution

- $\lambda_{1}=2 L=127 \mathrm{~cm} ; v_{w}=\lambda_{1} f_{1}=1.27 \cdot 245 \frac{\mathrm{~m}}{\mathrm{~s}}=311 \frac{\mathrm{~m}}{\mathrm{~s}}$

Solution

$$
\begin{aligned}
& \lambda_{1}=2 L=127 \mathrm{~cm} ; \quad v_{w}=\lambda_{1} f_{1}=1.27 .245 \frac{\mathrm{~m}}{\mathrm{~s}}=311 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{w}=\sqrt{\frac{F_{t}}{\mu}} ; \quad \tilde{v}_{w}=\sqrt{\frac{1.01 F_{t}}{\mu}}=\sqrt{1.01} v_{w}=1.005 v_{w}
\end{aligned}
$$

Solution

- $\lambda_{1}=2 L=127 \mathrm{~cm} ; v_{w}=\lambda_{1} f_{1}=1.27 \cdot 245 \frac{\mathrm{~m}}{\mathrm{~s}}=311 \frac{\mathrm{~m}}{\mathrm{~s}}$
- $v_{w}=\sqrt{\frac{F_{t}}{\mu}} ; \quad \tilde{v}_{w}=\sqrt{\frac{1.01 F_{t}}{\mu}}=\sqrt{1.01} v_{w}=1.005 v_{w}$
- $\tilde{v}_{w}=312.7 \mathrm{~m} \therefore \tilde{f}_{1}=\frac{\tilde{v}_{w}}{\lambda_{1}}=246.2 \mathrm{~Hz}$

Solution

- $\lambda_{1}=2 L=127 \mathrm{~cm} ; v_{w}=\lambda_{1} f_{1}=1.27 \cdot 245 \frac{\mathrm{~m}}{\mathrm{~s}}=311 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{w}=\sqrt{\frac{F_{t}}{\mu}} ; \quad \tilde{v}_{w}=\sqrt{\frac{1.01 F_{t}}{\mu}}=\sqrt{1.01} v_{w}=1.005 v_{w}$
- $\tilde{v}_{w}=312.7 \frac{m}{s} \therefore \quad \tilde{f}_{1}=\frac{\tilde{v}_{w}}{\lambda_{1}}=246.2 \mathrm{~Hz}=246 \mathrm{~Hz}$

$$
\frac{\Delta f}{f}=\frac{1.2}{245}=5 \times 10^{-3}=0.5 \%
$$

This confirms a result known from error analysis: errors in formulae involving powers of the measured quantity: $\quad y=(x+\Delta x)^{n}$

