PhysicsTutor ${ }^{(6)}$

Standing Wave

Giordano 12.57

Problem:

- You want to set up a standing wave on a string that has a length of 3.5 m . You find that the lowest frequency that will work is 20 Hz .
- What is the speed of a wave on this string?

Relevant ideas:

Relevant ideas:

- Modes on a string: the lowest frequency is associated with the fundamental ($n=1$). We assume the string is fixed at both ends (?!)

Relevant ideas:

- Modes on a string: the lowest frequency is associated with the fundamental ($n=1$). We assume the string is fixed at both ends (?!)
- The wavelength then follows as $\lambda_{1}=2 \mathrm{~L}$.

Relevant ideas:

- Modes on a string: the lowest frequency is associated with the fundamental ($n=1$). We assume the string is fixed at both ends (?!)
- The wavelength then follows as $\lambda_{1}=2 \mathrm{~L}$.
- The propagation speed is given as the product of λ_{1} with the frequency of the fundamental f_{1} which is given.

Equations associated with ideas:
standing waves on a string: (length L, both ends fixed)

$$
\lambda_{n}=\frac{2 L}{n} \quad f_{n}=\frac{v_{w}}{\lambda_{n}}
$$

Lowest $f_{n}: n=1 \quad$ (longest $\lambda \rightarrow \lambda_{1}=2 L$)

Strategy

- A straightforward calculation now.

Solution

Solution

- $\lambda_{1}=\frac{2 L}{1}=2 L=7.0 \mathrm{~m}$

Solution

- $\lambda_{1}=\frac{2 L}{1}=2 L=7.0 \mathrm{~m}$
- $\lambda_{1} f_{1}=v_{w} \quad \therefore v_{w}=7.0 \mathrm{~m} \cdot 20 \mathrm{~Hz}$

Solution

- $\lambda_{1}=\frac{2 L}{1}=2 L=7.0 \mathrm{~m}$
- $\lambda_{1} f_{1}=v_{w} \quad \therefore v_{w}=7.0 \mathrm{~m} \cdot 20 \mathrm{~Hz}$
- $v_{w}=140 \frac{\mathrm{~m}}{\mathrm{~s}}$

Solution

- $\lambda_{1}=\frac{2 L}{1}=2 L=7.0 \mathrm{~m}$
$\lambda_{1} f_{1}=v_{w} \quad \therefore v_{w}=7.0 \mathrm{~m} \cdot 20 \mathrm{~Hz}$
$v_{w}=140 \frac{\mathrm{~m}}{\mathrm{~s}}$
- Message: the modes on a vibrating string are quantized \therefore allowed frequencies and wavelengths are discrete.
The Schrödinger wave equation for particles can predict the allowed energy levels in atoms, nuclei,...

