PHYS 1010 6.0: CLASS TEST 1
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.
1)[5] You work for the movers, and are pulling the two crates shown over a slippery surface (kinetic friction between the crates and the floor $\mu_{k}=0.1$, but you wear super-shoes which give you traction!) The boxes are accelerating with $a=0.12 \mathrm{~m} / \mathrm{s}^{2}$. What is the tension in each rope? Start with free-body diagrams for the crates.

$$
N_{1}=m_{1} g
$$

$$
N_{2}=m_{2} g
$$

$$
f_{k_{1}}=\mu_{k} m_{1} g \text { (0.5 } f_{k_{2}}=\mu_{k} m_{2} g
$$

$$
\begin{aligned}
& m_{1} a=T_{1}-f_{k_{1}} \\
& \text { sI: } 0.5
\end{aligned} \quad m_{2} a=T_{2}-T_{1}-f_{k_{2}}
$$

$$
\begin{aligned}
& \begin{array}{ll}
f_{k_{1}} & =0.1 \cdot 90 \cdot 9.8
\end{array} \quad \begin{array}{ll}
& f_{k_{2}}=0.1 \cdot 140 \cdot 9.8
\end{array} \\
& =137.0 \mathrm{~N} \\
& \left(m_{1}+m_{2}\right) a=T_{2}-f_{k_{1}}-f_{k_{2}} \therefore \frac{T_{2}=230 \cdot 0.12+137+88.2}{=253 \mathrm{~N} \text { (1) }} \\
& T_{1}=m_{1} a+f_{k_{1}}=90 \cdot 0.12+88.2=99.0 \mathrm{~N} \text { (1) }
\end{aligned}
$$

2) [5] A football player wants to kick a ball through the uprights as shown. The ball is kicked from a distance of 30 m with a velocity of magnitude $15 \mathrm{~m} / \mathrm{s}$ at an angle of 35° with the horizontal. Will the ball make it over the crossbar, which is at a height of 3.1 m ? Ignore air drag when you derive your answer.
(1) $\quad x(t)=v_{0 x} t=\left(v_{0} \cos \alpha\right) t$
(1) $y(t)=v_{0 y} t-\frac{1}{2} g t^{2}$

time of flight t_{f} : (in SI units)

$$
\begin{align*}
30 & =x\left(t_{f}\right) \\
\therefore t_{f} & \left.=\frac{30}{15 \cos \left(35^{\circ}\right)} \cos \alpha\right) t_{f}=15 \cos \left(35^{\circ}\right) t_{f} \\
y\left(t_{f}\right) & \left.=\left(v_{0} \sin \alpha\right) t_{f}-\frac{1}{2} g t_{f}^{2}\right) \\
& =15.44 \mathrm{~s} \\
& =-0.574 \cdot 2.44-0.5 .9 .8 \cdot 5.96 \tag{1}
\end{align*}
$$

Q: above 3.1 m ?
\therefore the ball falls short (1)

Bonus: when does the ball hit the ground?

$$
\begin{aligned}
y\left(t_{g}\right)=0=t_{g}\left(v_{0} \sin \alpha-g / 2 t_{g}\right) & \therefore \quad t_{g}=\frac{2 v_{0} \sin \alpha}{g} \\
t_{g}=\frac{30 \cdot 0.574}{9.8}=1.76 \mathrm{~s} & \begin{aligned}
\Delta x & =v_{0 x} t_{g} \\
& =15 \cos \left(35^{\circ}\right)-1.76 \\
\text { Bonus }+1 & =21.6 \mathrm{~m}
\end{aligned}, ~
\end{aligned}
$$

3) [5] Two blocks of mass $m_{1}=35 \mathrm{~kg}$ and $m_{2}=13 \mathrm{~kg}$ are connected by a massless, nonstretchable string that passes over a massless and frictionless pulley as shown. (a) What is the coefficient of static friction between mass m_{1} and the table if the system is in equilibrium? ${ }^{*}$ Start with free-body diagrams for the two masses. (b) What is the tension force in the string?

* Assume that the system is barely stable, almost beginning to more

$m \stackrel{\rightharpoonup}{g}$

$$
a_{1}=0
$$

$$
F_{s}=\mu_{s} N=\mu_{s} m_{1} g \quad F_{s}=T=m_{2} g
$$

$$
\begin{equation*}
\therefore \quad m_{2} g=\mu_{5} m_{1} g \quad \quad \mu_{5}=\frac{m_{2}}{m_{1}}=\frac{13}{35}=0.371 \tag{1}
\end{equation*}
$$

In SI:

$$
\begin{equation*}
T=m_{2} g=13 \cdot 9.8=127 \mathrm{~N} \tag{1}
\end{equation*}
$$

4) [5] A block slides up a inclined plane with $\theta=22^{\circ}$. The coefficient of kinetic friction between block and plane equals $\mu_{k}=0.25$. What initial speed is required for the block to reach a maximum height of $h=3.0 \mathrm{~m}$? Start with a free-body diagram.
(1)

$\vec{g}=\vec{g}_{11}+\vec{g}_{1}$

$$
\left|\stackrel{\rightharpoonup}{g}_{\perp}\right|=g \cos \alpha \quad\left|\stackrel{\rightharpoonup}{g}_{11}\right|=g \sin \alpha \text { (1) }
$$

$$
N=m g_{L}=m g \cos \alpha \quad\left|\stackrel{\rightharpoonup}{f}_{k}\right|=\mu_{k} N=\mu_{k} m g \cos \alpha
$$

use $\hat{\imath}$ along incline: (1) $m a_{x}=-m g_{11}-f_{k} \quad \begin{aligned} \text { 个 opposes } v_{x}>0 \\ \text { since } \vec{g}_{11} \text { is to the le } \rho t\end{aligned}$

$$
\therefore a_{x}=-g \sin \alpha-\mu_{k} g \cos \alpha
$$

constant acceleration!

$$
\sin \alpha=\frac{3.0}{\Delta x}
$$

use $v_{f}^{2}=v_{i}^{2}+2 a \Delta x$

$$
\begin{aligned}
\Delta x & =? \\
v_{f} & =0
\end{aligned}
$$

(1)

$$
\begin{aligned}
& 0=v_{i}^{2}-2 g\left(\sin \alpha+\mu_{R} \cos \alpha\right) \frac{3.0}{\sin \alpha} \\
& \therefore v_{i}^{2}=6.0 g\left(1+\frac{\mu_{k}}{\tan \alpha}\right) \\
& \text { (1) } v_{i}=9.76 \mathrm{~m} / \mathrm{s} \quad(\approx 35 \mathrm{~km} / \mathrm{h})
\end{aligned}
$$

$$
\therefore v_{i}^{2}=6.0 \mathrm{~g}\left(1+\frac{\mu_{k}}{\tan \alpha}\right)=6.0 \cdot 9.8\left(1+\frac{0.25}{\tan 22^{\circ}}\right)
$$

$$
=95.2 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad \mu_{\mathrm{k}}<\mu_{\mathrm{s}}$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadr.: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross s'n area; $\rho=$ density of medium Sphere: $V=\frac{4}{3} \pi R^{3}$; Total Surface: $A_{S}=4 \pi R^{2}$; Cross Section=?

