PHYS 1010 6.0: CLASS TEST 2
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] Consider a circular space station as shown. Suppose the station has a radius of 25 m , and is designed to provide artificial gravity with the value of $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. What would be the required rotation period? Start with a free-body diagram for a person standing on the rim, and ignore the gravitational fields from earth, i.e., assume the station is in free space.

(1) $\uparrow=\begin{gathered}\text { towards } \\ \text { centre }\end{gathered}$

Normal force \vec{N} is provided by
the rim

$$
\begin{aligned}
& \begin{aligned}
a_{c p}=\frac{V^{2}}{R} & \left.=R \omega^{2} \quad \text { (since } \omega=\frac{V}{R}\right) \quad \text { astronaut } \\
& =R\left(\frac{2 \pi}{T}\right)^{2} \quad \text { (1) }
\end{aligned} \\
& \text { We demand } a_{c p}=g=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { (1) } \\
& \therefore\left(\frac{2 \pi}{T}\right)^{2}=\frac{g}{R} \quad \therefore \frac{T}{2 \pi}=\sqrt{\frac{R}{g}} \text { or } T=2 \pi \sqrt{\frac{R}{g}} \\
& T=6.28 \sqrt{\frac{25}{9.8}} \mathrm{~s}=10 . \mathrm{s} \\
& \text { extra: } v_{\text {nim }}=R \omega=R \frac{2 \pi}{T}=\frac{25.6 .28}{10} \frac{\mathrm{~m}}{\mathrm{~s}}=15.7 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { Pretty fast! } \longrightarrow=56.7 \frac{\mathrm{~km}}{\mathrm{~h}}
\end{aligned}
$$

2) [5] Consider the constellation of three masses shown in the figure, where $m_{1}=12 \mathrm{~kg}$, $m_{2}=25 \mathrm{~kg}$, and $m_{3}=50 \mathrm{~kg}$. Find the force of gravity on mass m_{1} due to m_{2} and m_{3}, and state it in a notation using \hat{i} and \hat{j}. Before you start the calculation provide arrow drawings for the forces \vec{F}_{2} on 11 , and \vec{F}_{3} on 1 , and a graphical addition to show $\vec{F}_{\text {net on } 1}$ in the provided figure.

$$
\begin{aligned}
& \vec{r}_{1}=\hat{\imath}+\hat{\jmath} \\
& \vec{r}_{2}=3.5 \hat{\imath}+1.5 \hat{\jmath} \\
& \vec{r}_{3}=1.5 \hat{\imath}+3.5 \hat{\jmath} \\
& \vec{F}_{2 \text { on } 1}=\frac{G m_{2} m_{1}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{3}}\left(\vec{r}_{2}-\vec{r}_{1}\right) \\
& \vec{F}_{3 \text { on } \mid}=\frac{G m_{3} m_{1}}{\left|\vec{r}_{3}-\vec{r}_{1}\right|^{3}}\left(\vec{r}_{3}-\vec{r}_{1}\right) \\
& \vec{r}_{2}-\vec{r}_{1}=2.5 \hat{\imath}+0.5 \hat{\jmath} \quad r_{12}=\sqrt{2.5^{2}+.5^{2}}=2.55 \mathrm{~m} \\
& \vec{r}_{3}-\vec{r}_{1}=0.5 \hat{\imath}+2.5 \hat{\jmath} \quad r_{13}=2.55 \mathrm{~m}=r_{12} \\
& \therefore \vec{F}_{\text {net on } 1}=\frac{G m_{1}}{r_{12}^{3}}\left(m_{2}\left(\vec{r}_{2}-\vec{r}_{1}\right)+m_{3}\left(\vec{r}_{3}-\vec{r}_{1}\right)\right) \text { (1) } \quad \begin{array}{l}
\text { note : } \\
m_{3}=2 m_{2}
\end{array} \\
& \text { anSI! }=\frac{6.67 \times 10^{-11}}{2.55^{3}} m_{1} m_{2}\left(\vec{r}_{2}-\vec{r}_{1}+2\left(\vec{r}_{3}-\vec{r}_{1}\right)\right) \\
& =\frac{6.67 \times 10^{-11} \cdot 12.25}{16.6}(2.5 \hat{\imath}+0.5 \hat{\jmath}+1.0 \hat{\imath}+5.0 \hat{\jmath})
\end{aligned}
$$

3) [5] A mass $m=1.5 \mathrm{~kg}$ rests on a compressed spring ($k=400 \mathrm{~N} / \mathrm{m}$) which is aligned with an inclined plane $\left(\theta=30^{\circ}\right)$, assumed to be frictionless. The spring is secured by a catch mechanism. When the catch is released, the mass moves up along the incline a distance of $d=2.0 \mathrm{~m}$. What was the compression of the spring? Ignore the effects from gravity while the mass is in contact with the spring (the compression is small compared to the distance d).

$$
\begin{align*}
& P E_{g}=m g y \\
& \begin{array}{l}
\frac{y}{d}=\sin g \quad \sin \left(30^{\circ}\right)=0.5 \\
\\
P E_{g}=m g d \sin g=1.5 \cdot 9.8 \cdot 2.0 .0 .5 \mathrm{Nm}=14.7 \mathrm{~J} \\
\text { spring energy: } P E_{H}=\frac{1}{2} k \Delta x^{2}=P E_{g} \\
\therefore \quad \Delta x^{2}=\frac{2 P E_{g}}{k}=\frac{2.14 .7}{400}=0.0735 \mathrm{~m}^{2} \\
\Delta X=0.27 \mathrm{~m}=27 \mathrm{~cm}
\end{array}
\end{align*}
$$

The compression is not so small, after all!
4) [5] Reconsider problem (3). Now the incline is no longer assumed frictionless, but the coefficient of kinetic friction μ_{k} is unknown. For the same experiment as before, the mass is found to travel only a distance of $d=1.5 \mathrm{~m}$. Calculate μ_{k}. Note: to find the answer it is not necessary to solve (3) completely.

The total energy provided by the spring is given by the gravitational $P E$ at maximum travel d in problem (3).

$$
E_{\text {tot }}=m g y_{0}=m g d_{0} \sin \theta=14.7 \mathrm{~J}(\text { from } 3)
$$

With kinetic friction the mass travels only to

$$
\begin{equation*}
d=1.5 \mathrm{~m} \quad \therefore \quad E_{\text {fin }}=m g d \sin \theta=11.0 \mathrm{~J} \tag{1}
\end{equation*}
$$

\therefore The friction force did negative work on the mas of $(11.0-14.7) \mathrm{J}=-3.7 \mathrm{~J}$

The force magnitude is given as $\mu_{k} N=\mu_{k} m g_{\perp}$

$$
\text { in SI: }\left|F_{k}\right|=\mu_{k} m g \cos \theta=\mu_{k} \cdot 1.5 \cdot 9.8 \cdot 0.866=12.7 \mu_{k}
$$

The work done:

$$
\begin{align*}
& W=F_{R} d=-12.7 \mu_{k} \cdot 1.5=-\mu_{k} \cdot 19.1 \mathrm{~J} \tag{1}\\
& \therefore-3.7=-19.1 \mu_{k} \quad \therefore \quad \mu_{k}=0.19 \text { (1) } \tag{1}\\
& \text { reasonable, since } 0<\mu_{k}<1
\end{align*}
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{E}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad \mu_{\mathrm{k}}<\mu_{\mathrm{s}} ; \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v} ;$ linear: $F_{\mathrm{d}}=d v ;$ quadr.: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross s'n area; $\rho=$ density of medium Sphere: $V=\frac{4}{3} \pi R^{3}$; Total Surface: $A_{S}=4 \pi R^{2}$; Cross Section=?
uniform circular m.: $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots ; \omega=\frac{2 \pi}{T}$.
$a_{\mathrm{cp}}=\frac{v^{2}}{r} \quad v=\omega r$.
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g y$. $K=\frac{m}{2} v^{2}$

