PHYS 1010 6.0: CLASS TEST 3 on Dec. 3, 2010
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) Two eager hockey players are entering a head-on collision with velocities $v_{1}=10 \mathrm{~m} / \mathrm{s}$ and $v_{2}=-8 \mathrm{~m} / \mathrm{s}$ respectively. They grab each other, and come out of the collision together with $V=-2 \mathrm{~m} / \mathrm{s}$. Player 1 has a mass of 90 kg .
a) [3] What is the mass of player 2 ? Explain your steps.
b) [2] What happened to the mechanical energy? Ignore frictional losses between skates and ice, ie., neither player 'applied the brakes'.

- The collision is inelastic, since they emerge with 0.5 a common velocity ("sticky collision")
- Linear momentum conservation applies since no external forces act along the direction of motion (skates glide freely)

$$
\begin{aligned}
& m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) \sqrt{1} \\
& m_{2}\left(v_{2}-V\right)=m_{1}\left(V-v_{1}\right) \\
& m_{2}=m_{1} \frac{V-v_{1}}{v_{2}-V} \quad 0.5 \\
& \text { inSt: } \therefore m_{2}=90 \frac{-2-10}{-8+2}=180 \quad m_{2}=180 \mathrm{~kg} 0.5 \\
& \text { b) }\left(K E_{1}+K E_{2}\right)_{\text {before }}=\frac{1}{2}\left(m_{1} v_{1}^{2}+m_{2} v_{2}^{2}\right)=\frac{1}{2}(90.100+180.64) \text { inst } 0.5 \\
& \left(K E_{1}+K E_{2}\right)_{\text {alter }}=\frac{1}{2}\left(m_{1}+m_{2}\right) V^{2}=540 \mathrm{~J} 0.5
\end{aligned}
$$

972 kJ of mech. energy wan lost (big bruises!) 1. (almost all)
2) A roller coaster car enters a loop with a speed of $100 \mathrm{~km} / \mathrm{h}$ at the bottom. The car with six passengers has a mass of 800 kg . The loop radius is 15 m . Ignore frictional/ drag losses on the car's motion.
a) [3] Demonstrate that the car will make it over the top without falling out of the tracks.
b) [2] Calculate the normal force (tracks on car) at the top.

$$
\begin{equation*}
v_{B}=100 \frac{\mathrm{~km}}{\mathrm{~h}}=27.8 \frac{\mathrm{~m}}{\mathrm{~s}} \quad v_{B}^{2}=772 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \tag{1}
\end{equation*}
$$

Energy conservation: $\quad \frac{1}{2} m / v_{B}^{2}=\frac{1}{2} m v_{\text {top }}^{2}+m g \underbrace{}_{2}$]

$$
\therefore v_{\text {top }}^{2}=v_{B}^{2}-4 g R=184 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}
$$

centripetal acceleration at top: $a_{c}=\frac{v^{2}}{R}=12.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ (1)
Since a_{c} exceeds g, the car moves faster than (1) with the critical speed $\left(v_{c}=\sqrt{g R}\right)$ optional
b) g provides $9.8 \mathrm{~m} / \mathrm{s}^{2}$, the balance is due to N_{T} : in SI: $N_{T}=m\left(a_{c}-g\right)=m \cdot 2.44=800.2 .44=1.95 \times 10^{3} \mathrm{~N}$

The normal force provided by the track is $2.0 \times 10^{3} \mathrm{~N}$
3) A cylindrical spool has some turns of thin thread wound around it (no change in radius) and the free end comes out on top when the spool is placed on the table. The spool has a mass of 2.0 kg . Applying a tension force of 15 N causes the spool to move (it is dragged and executes no-slip rolling motion). Calculate the linear acceleration of the centre of mass (CM) of the spool. The rotational inertia of a rolling cylinder about the CM is $\frac{1}{2} m R^{2}$, and about a point on the rim it is $\frac{3}{2} m R^{2}$. Start with a sketch indicating all forces that apply and explain

$$
\begin{align*}
& F_{n e t, y}=0 \quad(N=m g) \\
& m a_{x}=T-F_{s} \tag{0.5}
\end{align*}
$$

Rotational motion \nearrow pivot $=C M: I_{C M} \alpha=-R T-R F_{S}$

Condition of no-slip rolling:

$$
\begin{array}{cc}
\Delta x=-R \Delta \theta & \text { positive } \\
v_{x}=-R \omega & \text { translation } \\
a_{x}=-R \alpha \quad & =\text { cw roth } \\
0.5 & \therefore \text { - sign }
\end{array}
$$

Using option (a): $I_{C M}=\frac{1}{2} m R^{2}$

$$
\frac{1}{2} m R^{2}\left(-\frac{a_{x}}{R}\right)=-R\left(T+F_{s}\right) \therefore a_{x}=\frac{2\left(T+F_{s}\right)}{m}
$$

using (b): $I_{0}=\frac{3}{2} m R^{2}$:

$$
\begin{equation*}
\frac{3}{2} m R^{\prime}\left(-\frac{a_{x}}{R}\right)=-2 R R \quad \therefore a_{x}=\frac{4 T}{3 m} L \tag{1}
\end{equation*}
$$

Now combine: (a) $m a_{x}=T-F_{s}$ and $m a_{x}=2\left(T+F_{s}\right)$

$$
\therefore \quad 2 T+2 F_{S}=T-F_{S} \quad \therefore \quad T=-3 F_{S} \quad \therefore \quad F_{S}=-\frac{1}{3} T
$$

OR: (b) $\quad m a_{x}=\frac{4}{3} T=T-F_{s} \therefore \quad \therefore \frac{1}{3} T=-F_{s} \therefore F_{s}=\frac{T}{3}$
Motion of $C M: \quad a_{x}=\frac{1}{m}\left(T-F_{S}\right)=\frac{1}{m}\left(T-\left(-\frac{T}{3}\right)\right)=\frac{4}{3} \frac{T}{m}$
in SI: $\quad a_{x}=\frac{4}{3} \frac{15}{2.0}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \| \begin{gathered}\text { (1) }\end{gathered} \vec{F}_{S}$ in the direction of \vec{a}^{2}
optional:
cf: slipping (no rolling): $m a_{x}=T \quad a_{x}=\frac{15}{2.0}=7.5 \mathrm{~m} / \mathrm{s}^{2}$
4) [5] A bowling ball arrives with a speed of $12 \mathrm{~m} / \mathrm{s}$ at the bottom of an inclined plane. What is the vertical height Δy the ball will reach under no-slip rolling motion? The rotational inertia of a sphere is $\frac{2}{5} m R^{2}$. Note that even though you don't know the angle of inclination, nor the mass of the ball, or its radius, a numerical answer can be obtained. Compare this height to the height obtained under perfect sliding (no rolling, no friction).
perfect sliding: $\quad \frac{1}{2} m v_{i}^{2}=m g \Delta y \quad \therefore \Delta y=\frac{72}{9.8}=\frac{7.3 \mathrm{~m}}{1}$
Rolling: $\quad \Delta x=R \Delta \theta$ or $v_{x}=R \omega \quad$ (no-slip)
$\underbrace{\text { initial } K E:} \frac{1}{2} m v_{x}^{2}+\frac{1}{2} I_{C M} \omega^{2}]=\frac{1}{2} m\left[v_{x}^{2}+\frac{2}{5} R^{2} \frac{v_{x}^{2}}{R^{2}}\right]$
(1) $=\frac{1}{2} m\left[\frac{7}{5} v_{x}^{2}\right]=m \cdot 101$ SI (1)
final PE :mg Δy (1) $\therefore \Delta y=10.3 \mathrm{~m}$

The final height under rolling: $\Delta y=10 \mathrm{~m}$
(it is more than under sliding conditions, since the rotational energy is in addition to the translation of the $C M$)
Additional remark for Q3: When pulling the spool under rolling rs sliding we get $a_{x}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ rs $7.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ from the same T ! In addition we are storing rotational energy. Are we getting something for free ?? NO: We are unwinding the string. The end of the string (where $\vec{T}_{\text {acts }}$) travels with $\Delta x=2 \Delta x_{c M}$ due to the unwinding. Thus, the work put into the system $W=T \Delta x$ is twice (for constant T) as compared to dragging the spool without rolling. Some of this extra energy goes towards an increase in translational motion. Why does statichion do the counter-intwitire thing? \rightarrow slowing rotation, under rolling the point FQRMULASHEET G AG AG is at rest. Electrostatic ousting translation? $v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{1}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t \quad$ can at rest. Electrostatic bonding $v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad$ Lupto the Limit $f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$ $\mu_{s} N$. $f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}$
$f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad \mu_{\mathrm{k}}<\mu_{\mathrm{s}} ; \quad \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v} ;$ linear: $F_{\mathrm{d}}=d v ;$ quadr.: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross s'n area; $\rho=$ density of medium Sphere: $V=\frac{4}{3} \pi R^{3} ;$ Total Surface: $A_{S}=4 \pi R^{2} ;$ Cross Section $=?$
uniform circular $m .: \vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \quad \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots ; \omega=\frac{2 \pi}{T}$.
$a_{\mathrm{cp}}=\frac{v^{2}}{r} \quad v=\omega r$.
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\operatorname{avg}} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\text {in }}+K_{2}^{\text {in }}=K_{1}^{\text {fin }}+K_{2}^{\text {fin }} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$

