PHYS 1010 6.0: CLASS TEST 5
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] Given the following circuit diagram which contains an ideal battery, and three resistors, R_{1}, R_{2}, R_{3}. Complete the diagram by indicating how to measure: the current I_{2} through resistor R_{2}; the voltage drop ΔV_{3} across resistor R_{3}. Then calculate the currents I_{1}, I_{2} and I_{3},
and the power dissipated by R_{3}.
Total current $I_{1}=\frac{\Delta V_{B}}{R_{e q}}$
R_{2} and R_{3} are in parallel:

$$
\begin{align*}
& R_{23}^{e q}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{800}{60} \Omega=\frac{40}{3} \Omega \\
& R_{\text {eq }}=R_{1}+R_{23}^{\text {eq }}=\frac{70}{3} \Omega=23.3 \Omega \\
& I_{1}=\frac{3.0}{23.3}=0.129 \mathrm{~A} \tag{1}\\
& R_{2}=20 \Omega \\
& R_{3}=40 \Omega \\
& \Delta V_{1}=R_{1} I_{1}=1.29 \mathrm{~V} \quad \therefore \quad \Delta V_{2}=\Delta V_{3}=(3-1.29) \mathrm{V}=1.71 \mathrm{~V} \\
& \therefore I_{2}=\frac{\Delta V_{2}}{R_{2}}=0.0855 \mathrm{~A} \text { (1) } I_{3}=\frac{\Delta V_{3}}{R_{3}}=0.04275 \mathrm{~A} \tag{1}\\
& P_{3}=\Delta V_{3} \cdot I_{3}=1.71 \mathrm{~V} \times 0.04275 \mathrm{~A}=0.0731 \mathrm{~W} \tag{1}\\
& \therefore I_{1}=129 \mathrm{~mA}, I_{2}=85.5 \mathrm{~mA}, \quad I_{3}=42.75 \mathrm{~mA} \\
& P_{3}=73.1 \mathrm{~mW}
\end{align*}
$$

2) [5] The diagram shows a non-ideal battery (with internal resistance $R_{\text {int }}$), and a simple resistor-capacitor network. Assume that just before the switch is set from charging to discharging (at time $t=0$) the capacitors are fully charged. Give a formula for the discharge current (without derivation, use the formula sheet which gives a generic expression). Calculate the time constant, and graph the current as a function of time (properly marked current and time axis is required!)
C_{1} and C_{2} are in

$$
\begin{aligned}
R_{\text {int }} & =1.0 \Omega \\
R_{1} & =100 \Omega \\
R_{2} & =200 \Omega \\
C_{1} & =10 \mu \mathrm{~F} \\
C_{2} & =15 \mu \mathrm{~F}
\end{aligned}
$$

$$
\text { parallel } \therefore C_{e q}=C_{1}+C_{2} \quad R_{2}=200 \Omega
$$

$$
c_{e q}=25 \mu \mathrm{~F} \quad 0.5
$$

The discharge is through R_{1} and R_{2} in series, i.e., $R_{\text {eq }}=R_{1}+R_{2}$

$$
\begin{aligned}
& R_{e q}=300 \Omega 0.5 \\
& \tau=R C \Rightarrow R_{e q} \cdot C_{e q}=300 \times 25 \times 10^{-6} \Omega F=7500 \times 10^{-6} \mathrm{~s} \\
& \tau=7.5 \mathrm{~ms} 1.0
\end{aligned}
$$

$$
\begin{aligned}
I(t)=I_{0} e^{-t / \tau} \quad \text { where } I_{0} & =\frac{\Delta V_{c}}{R_{e q}}=\frac{\Delta V_{B}}{R_{e q}}=\frac{9 \mathrm{~V}}{300 \Omega} \\
I_{0} & =0.03 \mathrm{~A} 1.0
\end{aligned}
$$

$I(t)$

drawing the graph

$$
\left(\frac{1}{e} \gtrsim \frac{1}{3} \text { is good enough' }\right)
$$

0.5 for 0.03 A on y-axis 0.5 for τ-value marked and $2 \tau, 3 \tau$ indicated
3) [5] The figure shows a straight wire segment, and then a loop. The same current passes through. Three locations are marked, A, B are far away from the loop, so its contribution can be ignored. Location C is at the centre of the loop. Use the formulae provided to calculate the magnetic fields at A, B, C in the paper plane. A current of 1.5 A flows through the wire. Be careful with location C, there are two contributions. The fields are to be specified by magnitude and direction or by listing the appropriate component with sign!

By the RH rule the \vec{B} field $a A$ is out of the plane $\left(B_{z}>0\right.$ if $\hat{\gamma} \longrightarrow_{\rightarrow}$ is implied) and \hat{A} it is into (1) the plane. At C the contributions from the loop and from the straight wire add and give a stronger out-of-plane con tribution.

$$
\begin{align*}
A: \quad\left|B_{z}\right| & =\frac{\mu_{0}}{2 \pi} \frac{I}{d}=2 \times 10^{-7} \frac{T m}{A} \frac{1.5 \mathrm{~A}}{0.01 \mathrm{~m}}=3.0 \times 10^{-5} \mathrm{~T} \\
B_{z} & =+3.0 \times 10^{-5} \mathrm{~T} \tag{1}\\
B: \quad B_{z} & =-3.0 \times 10^{-5} \mathrm{~T} \tag{1}
\end{align*}
$$

C: straight wire contributes same as at A, and also $\quad B_{\text {loop }}=\frac{\mu_{0} I}{2 R}$ in the same direction

$$
B_{100 p}=\frac{4 \pi \times 10^{-7} 1.5 A}{0.02 \mathrm{~m}} \frac{T \mathrm{~m}}{A}=9.42 \times 10^{-5}
$$

$$
\begin{equation*}
\therefore \quad B_{z}=+1.24 \times 10^{-4} \mathrm{~T} \tag{1}
\end{equation*}
$$

$$
\text { at }(0,0,0)
$$

4) [5] The particle in the figure has a negative charge, and its velocity vector lies in the $x-y$ plane and makes an angle of $75^{\circ} \stackrel{\hat{~ w i t h ~}}{ }$ the y axis. A magnetic field is along the $+x$ direction. What is the direction of the magnetic force on the particle? Now you are told that the field has a strength of 1.5 T , and that the particle speed is $v=500 \mathrm{~m} / \mathrm{s}$. Calculate the manotis fores.
is an election and its

$$
\vec{F}_{M}=q \vec{v} \times \vec{B}
$$

By the RH rule $\left(\vec{B}=B_{0} \hat{l}\right)$

$$
\vec{v} \times \hat{\imath} \sim-\hat{k}
$$

$\vec{v} \times \vec{B}$ is in the negative $z \operatorname{dir}^{\prime} n$ the acceleration of the diction

but $q<0$, thus $\vec{F}_{M} \sim \hat{k}$, i.e, along positive z (1)

$$
\begin{align*}
F_{M, Z}= & +e|v||B| \sin \left(15^{\circ}\right) \\
& \left(\text { or }-e|v||B| \sin \left(360^{\circ}-15^{\circ}\right)\right) \tag{1}\\
F_{M, Z}= & 1.60 \times 10^{-19} \mathrm{C} \times 500 \frac{\mathrm{~m}}{\mathrm{~s}} \times 1.5 T \times \underbrace{\sin \left(15^{\circ}\right)}_{0.259} \\
= & 3.11 \times 10^{-17} \mathrm{~N} \\
= & 3.1 \times 10^{-17} \mathrm{~N}
\end{align*}
$$

$$
\begin{aligned}
a_{e, z}=\frac{F_{M_{12}}}{m_{e}}=\frac{3.11 \times 10^{-17}}{9.11 \times 10^{-31}} \frac{\mathrm{~N}}{\mathrm{~kg}} & =0.34 \times 10^{14} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& =3.4 \times 10^{13} \frac{\mathrm{~m}}{\mathrm{~s} 2}
\end{aligned}
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$.
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\text {net }} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\mathrm{in}}+K_{2}^{\mathrm{in}}=K_{1}^{\mathrm{fin}}+K_{2}^{\mathrm{fin}} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad K=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\vec{F}_{\mathrm{C}}=\frac{K q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 K|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\eta|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}, \operatorname{pos} \rightarrow\right.$ neg $)$
$\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{el}}}{d x}$
$Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$
parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$
$\Delta V_{\text {loop }}=\sum_{i} \Delta V_{i}=0 \quad \sum I_{\text {in }}=\sum I_{\text {out }}$
$P=\Delta V I \quad$ watt $=\mathrm{W}=\mathrm{VA} \quad P_{R}=\Delta V_{R} I=I^{2} R$
$\tau=R C \quad Q(t)=Q_{0} e^{-t / \tau} \quad I(t)=-\frac{d Q}{d t}=\frac{\Delta V_{0}}{R} e^{-t / \tau}$

short coil, $R \gg L$ (N turns): $B_{\text {coil,centre }}=\frac{\mu_{0} N I}{2 R} \quad$ solenoid, $L \gg R: B_{\text {sol, inside }}=\frac{\mu_{0} N I}{L}$
mag dipole: $\vec{\mu}=(A I$, from south to north $) \quad \vec{B}_{\text {dip }}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{\mu}}{z^{3}}$ on axis, far away
$\vec{F}_{\text {on } q}=q \vec{v} \times \vec{B} \quad$ force on current \perp to $\vec{B}: F_{\text {wire }}=I L B$
force betw. parallel wires: $F_{2 \text { wires }}=\frac{\mu_{0} L I_{1} I_{2}}{2 \pi d} \quad$ torque on mag dipole: $\vec{\mu}$ in $\vec{B}: \vec{\tau}=\vec{\mu} \times \vec{B}$

