PHYS 1010 6.0: CLASS TEST 5
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] A particle of charge $q=15 \mu \mathrm{C}$ is moving at an angle of 35° with respect to the x-axis with a speed of $150 \mathrm{~m} / \mathrm{s}$. There is a constant magnetic field of magnitude 0.75 T parallel to x. Find the magnitude of the magnetic force on the particle. Start with a figure depicting the situation.

optional

$$
\vec{F}_{M}=q \vec{v} \times \vec{B} \text { or }\left|F_{M}\right|=|q v B \sin \alpha|
$$

orientation of \vec{F}_{M} : by $R H$ rule $\vec{v} \times \vec{B}$ is along negative z (into the plane in LH figure downward in RH figure)
This is the direction of \vec{F}_{M} (since $q>0$)

$$
\begin{align*}
& F_{M}=q v B \sin (\Varangle \vec{v}, \vec{B}) \quad \text { where } \nless \vec{v}, \vec{B}=360-\alpha \\
& \text { not a } \\
& \text { magnitude }=-q v B \sin \alpha \quad\left("-" \text {, since } \vec{F}_{M} \sim-\hat{k}\right) \\
& \text { or }\left|F_{M}\right|=q v B \sin \alpha \quad(\operatorname{since} 9>0, \sin \alpha>0) \tag{2}\\
& \text { magnitude } \\
& \text { of } \vec{F}_{M}=15 \times 10^{-6} \cdot 150 \cdot 0.75 \cdot \sin \left(35^{\circ}\right) \mathrm{N} \\
&=968 \mu \mathrm{~N}=0.97 \mathrm{mN} \quad(2)
\end{align*}
$$

anyone of these answers, but no "-"
2) [5] A long, straight wire carries a current $I_{1}=3.0 \mathrm{~A}$, and is a distance $b=15 \mathrm{~cm}$ from a square current loop which carries a current of $I_{2}=1.5 \mathrm{~A}$. The loop and the wire are in the same plane and parallel, the square loop has base length $a=6 \mathrm{~cm}$, and the distance b is from wire to wire, as shown. The current orientations are indicated. What are the magnitude and direction of the force exerted by the wire on the current loop? What are the the magnitude and direction of the force exerted by the current loop on the wire?

$I_{2} \psi \stackrel{\rightharpoonup}{\vec{B}}$ yields $\vec{F}_{M} \rightarrow$ while $\uparrow I_{2}$ yields $\vec{F}_{M} \&$
equal and opposite. Only the parallel segments contribute to the net force on the loop.

$$
\underline{I}_{2} \otimes \stackrel{\rightharpoonup}{B}_{1} \quad \downarrow \vec{F}_{M_{1}}
$$

$$
\stackrel{I_{2}}{\longrightarrow} \otimes \stackrel{\rightharpoonup}{B}_{2} \quad \uparrow \stackrel{\rightharpoonup}{F}_{M_{2}}
$$

Since $B_{2}<B_{1}$ a net repulsion occurs.

$$
\begin{align*}
& F_{\text {on loop }}=\frac{\mu_{0}}{2 \pi} I_{1} I_{2}\left(\frac{a}{b}-\frac{a}{a+b}\right) \quad \begin{array}{l}
\text { orientation is } \\
\text { downwards } \\
(\sim-\hat{\jmath}), ~ a n a y ~
\end{array} \\
& =2.10^{-7} 3.0 \cdot 1.5\left(\frac{6}{15}-\frac{6}{21}\right) \mathrm{N} \\
& \text { from wire }
\end{align*}
$$

By Newton's $3^{\text {rd }}$ law, or by explicit calculation (RH mule) the force on the wire is opposite and of equal magnitude (\vec{F} onwire $\sim \hat{\gamma}$ or up)

$$
F_{\text {on wire }}=1.0 \times 10^{-7} \mathrm{~N}
$$

3) [5] A current loop with resistance $R=350 \Omega$ and an area $A=0.6 \mathrm{~m}^{2}$ is oriented perpendicular to a magnetic field that varies in time as $B(t)=t(1-t)$ [in SI units, and $0 \leq t \leq 1$]. What is the current induced in the loop at times: $t=0.3 \mathrm{~s}, t=0.5 \mathrm{~s}, t=1.0 \mathrm{~s}$?

Magnetic flux $\phi_{M}(t)=A B(t)$

$$
\begin{aligned}
& \frac{d \phi_{M}}{d t}=A \frac{d B}{d t}=A((1-t)+t(-1))=A(1-2 t) \\
& \Delta V=-\frac{d \phi_{M}}{d t} \quad \text { (Faraday) } \\
& \left.I=\frac{\Delta V}{R} \text { (ohm) }\right\}|I|=\frac{1}{R}\left|\frac{d \phi_{M}}{d t}\right|
\end{aligned}
$$

(1) or:

$$
\begin{align*}
& |I|=\frac{A}{R}|(1-2 t)|=\frac{0.6}{350}|1-2 t|^{\ell} I=\frac{A}{R}(2 t-1) \\
& \text { a } t_{1}=0.3 \mathrm{~s} \quad\left|I_{1}\right|=\frac{0.6}{350}|1-0.6| A=6.9 \times 10^{-4} \mathrm{~A} \tag{1}\\
& t_{2}=0.5 \mathrm{~s} \quad I_{2}=0 \mathrm{~A} \\
& t_{3}=1.0 \mathrm{~s} \quad\left|I_{3}\right|=\frac{0.6}{350} \mathrm{~A}=1.7 \mathrm{~mA}=1.7 \times 10^{-3} \mathrm{~A} \tag{1}
\end{align*}
$$

I_{1} and I_{3} have opposite orientation (1)
could ${ }^{T}$ be indicated optional:
between $t=0$ optional:
 and $t_{2}=0.5 \mathrm{~s}$ $B(t)$ ramps up, ϕ_{M} increases, current is $C W$, for $0.5<t<1$ it $\phi_{M_{1}}^{\sim}$

$$
\therefore I_{2}=0
$$ is CCW

4) [5] A circuit is formed using a 3 V battery, a simple on-off switch, a resistor $R=15 \mathrm{k} \Omega$, and an inductor $L=12 \mathrm{mH}$. They are all connected in series. Begin with a drawing of the circuit diagram. What is the current the instant after the switch is closed? What is the current a very long time after the switch is closed? Draw a figure of the current as a function of time with a correct labeling of the axes (requires the time constant!).

$$
\begin{align*}
& I(t=0)=0 \tag{1}\\
& I(t \rightarrow \infty)=\frac{\Delta V_{B}}{R}=\frac{3}{15} \mathrm{~mA}=0.2 \mathrm{~mA}
\end{align*}
$$

optional: (assumes ideal inductor, or $R_{L} \ll R$)
time constant $\tau=\frac{L}{R}=\frac{12}{15} \mu \mathrm{~s}=0.8 \mu \mathrm{~s}$

$$
I(t)=\underbrace{\frac{\Delta V_{B}}{R}}_{I_{S S}}\left(1-e^{-t / \tau}\right)
$$

(2) (includes $\tau=0.8 \mu \mathrm{~s}$
and $I_{s s}=0.2 \mathrm{~mA}$
labels)

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$.
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\text {net }} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\mathrm{in}}+K_{2}^{\mathrm{in}}=K_{1}^{\mathrm{fin}}+K_{2}^{\mathrm{fin}} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad K=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\vec{F}_{\mathrm{C}}=\frac{K q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 K|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\eta|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}, \operatorname{pos} \rightarrow\right.$ neg $)$
$\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{el}}}{d x}$
$Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$
parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$
$\Delta V_{\text {loop }}=\sum_{i} \Delta V_{i}=0 \quad \sum I_{\text {in }}=\sum I_{\text {out }}$
$P=\Delta V I \quad$ watt $=\mathrm{W}=\mathrm{VA} \quad P_{R}=\Delta V_{R} I=I^{2} R$
$\tau=R C \quad Q(t)=Q_{0} e^{-t / \tau} \quad I(t)=-\frac{d Q}{d t}=\frac{\Delta V_{0}}{R} e^{-t / \tau}$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \vec{r}}{r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{I \Delta \vec{s} \times \vec{r}}{r^{3}} \quad B_{\text {wire }}=\frac{\mu_{0}}{2 \pi} \frac{I}{d}$ (use RH rule) $\quad \frac{\mu_{0}}{4 \pi}=10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}} \quad$ tesla $=\mathrm{T}=\frac{\mathrm{N}}{\mathrm{Am}}$
short coil, $R \gg L$ (N turns): $B_{\text {coil,centre }}=\frac{\mu_{0} N I}{2 R} \quad$ solenoid, $L \gg R: B_{\text {sol, inside }}=\frac{\mu_{0} N I}{L}$
mag dipole: $\vec{\mu}=(A I$, from south to north $) \quad \vec{B}_{\text {dip }}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{\mu}}{z^{3}}$ on axis, far away
$\vec{F}_{\text {on } q}=q \vec{v} \times \vec{B} \quad$ force on current \perp to $\vec{B}: F_{\text {wire }}=I L B$
force betw. parallel wires: $F_{2 \text { wires }}=\frac{\mu_{0} L I_{1} I_{2}}{2 \pi d}$ torque on mag dipole: $\vec{\mu}$ in $\vec{B}: \vec{\tau}=\vec{\mu} \times \vec{B}$ bar (length L) moves w. $\vec{v} \perp \vec{B}$ gen. EMF: $\varepsilon=v L B$;
$\Phi_{m}=\vec{A} \cdot \vec{B} \quad \Phi_{m}=A B \cos \theta \quad \varepsilon=\left|\frac{d \Phi_{m}}{d t}\right|=\left|\vec{B} \cdot \frac{d \vec{A}}{d t}+\vec{A} \cdot \frac{d \vec{B}}{d t}\right|$
$L=\frac{\Phi_{m}}{I} \quad$ henry $=\mathrm{H}=\frac{\mathrm{Tm}^{2}}{\mathrm{~A}} \quad \varepsilon_{\text {coil }}=L\left|\frac{d I}{d t}\right| \quad \Delta V_{L}=-L \frac{d I}{d t} \quad \mathrm{PE}_{L}=\frac{L}{2} I^{2}$
series L and R: $\tau=\frac{L}{R} \quad I(t)=I_{0}\left(1-e^{-t / \tau}\right)$

