PHYS 1010 6.0: CLASS TEST 5
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] The capacitor in the circuit shown is initially uncharged. a) What is the battery current right after switch S_{1} is closed? b) S_{1} was closed now for a long time. At time t_{1} simultaneously S_{1} is opened and S_{2} is closed. What is the current through S_{2} at this instant. c) A long time later $t_{2} \gg t_{1}$ (while S_{2} is closed) what is the the current through S_{2} ?

$$
\begin{array}{cl}
C=90 \mu \mathrm{~F}, & R_{1}=2.2 \mathrm{k} \Omega \\
\Delta V_{B}=3.0 \mathrm{~V}, & R_{2}=4.9 \mathrm{k} \Omega
\end{array}
$$

a) $\quad R_{\text {eq }}=R_{1}+R_{2}=7.1 \mathrm{k} \Omega$, (1)

$$
\begin{aligned}
& C \text { has } Q=0 \text {, ie, } \Delta V_{C}=\frac{Q}{C}=0 \therefore \quad \therefore(0)=\frac{\Delta V_{B}}{R_{e q}} \\
& T(0)=3.0
\end{aligned}
$$

$$
I(0)=\frac{3.0}{7.1 \times 10^{3}}=0.42 \mathrm{~mA}(1.5) \stackrel{\text { includes reasoning }}{\leftarrow} \begin{gathered}
\text { Req } \\
\text { (intermediate steps) }
\end{gathered}
$$

b) discharge current, $\Delta V_{C}=\Delta V_{B}$, since $I(\infty)=0$ no voltage drop across

$$
I\left(t_{1}\right)=\frac{\Delta V_{c}}{R_{2}}=\frac{3.0 \mathrm{~V}}{4.9 \mathrm{k} \Omega}=0.61 \mathrm{~mA}(1.5 \text { direction is }
$$

c) $I(\infty)=0$, since $I(t)=I_{0} e^{-t / \tau}$, where
(1) $\tau=R_{2} C$
2) [5] An alpha particle is a helium nucleus (two protons and two neutrons bound together). If it moves along the positive y-axis and experiences a magnetic force along the negative z-axis, what can you conclude about the direction of \vec{B} ? Begin with a sketch indicating all vectors involved, and explain your reasoning.

$$
\begin{aligned}
& F=q \vec{v} \times \vec{B} \\
& q=2 e>0
\end{aligned}
$$

The magnetic field is along the positive x-axis

$$
\begin{equation*}
\vec{B}=(B, 0,0)=B \hat{C} \tag{2}
\end{equation*}
$$

By the RH rule
3) [5] A circular loop of wire lies in the $x-y$ plane. A time-varying magnetic field is given as $\vec{B}=(0,0,-B(t))$, with the field strength $B(t)$ decreasing over time. a) Explain the direction of the induced current. (b) The wire loop has a resistance of $R=1 \Omega$, and a diameter of 1 cm . The constant rate at which the field decreases is $-0.1 \mathrm{~T} / \mathrm{s}$. Calculate the current in the loop and the power dissipated.

a) The strength of \vec{B} decreasing. By the Lens rule $\vec{B}_{\text {ind }}$ will Support \vec{B}, in.,
$\begin{aligned} & \vec{B} \\ & \text { ind }=\left(0,0,-B_{\text {ind }}\right) \\ &=-B_{\text {ind }} \hat{k}\end{aligned} \quad . \quad 1$
By the simple RH rule the induced current is CW when viewed from above (1)
b) $d=1 \mathrm{~cm}=10^{-2} \mathrm{~m} \therefore$ loop area $=A=\pi \frac{d^{2}}{4}$

$$
A=7.85 \times 10^{-5} \mathrm{~m}^{2} 0.5
$$

$\phi_{M}=B(t) A$ since $\vec{B} \perp$ to loop area

$$
\frac{d \phi_{M}}{d t}=\frac{d B}{d t} A \quad \frac{d B}{d t}=-0.1 \frac{T}{5}
$$

$$
\zeta=-\frac{d \phi_{M}}{d t}=-A \frac{d B}{d t}=7.85 \times 10^{-5} \times 10^{-1} \frac{T_{m}^{2}}{\mathrm{~s}}
$$

$$
=7.85 \mu \mathrm{~V}
$$

$$
\begin{align*}
& I=\frac{\varepsilon}{R}=\frac{7.85 \times 10^{-6} \mathrm{~V}}{1 \Omega}=7.85 \mu \mathrm{~A} \tag{2}\\
& P=\sum_{(0.5)} I=7.85^{2} \times 10^{-12} \mathrm{~W}=6.2 \times 10^{-11} \mathrm{~W} \tag{1}
\end{align*}
$$

4) [5] In the diagram shown switch S was open a long time, and it is closed at $t=0$. a) What is the current I_{1} and I_{2} through R_{1} and R_{2} respectively at $t=0$, just when S is closed? b) What is the voltage across inductor L at $t=0$ (S closed), i.e., $\Delta V_{L}(0)$? c) S was closed now for a long time. What are the currents I_{1}, I_{2} (through R_{1}, R_{2} respectively), and the inductor voltage ΔV_{L} ? d) A long time later S is re-opened at t_{o}. What is the magnitude and direction of $I_{1}\left(t_{\mathrm{o}}\right)$ (after re-opening)? e) What is the inductor voltage $\Delta V_{L}\left(t_{\mathrm{o}}\right)$ at this time?

$$
\begin{array}{ll}
\Delta V_{B}=9.0 \mathrm{~V}, \quad & R_{1}=0.5 \mathrm{k} \Omega, \\
R_{2}=1.2 \mathrm{k} \Omega, \quad L=3.0 \mathrm{mH}
\end{array}
$$

a)

$$
\begin{align*}
& I_{1}=\frac{\Delta V_{B}}{R_{1}}=18 \mathrm{~mA} \\
& I_{2}=0
\end{align*}
$$

b) $\Delta V_{L}(0)=-\Delta V_{B}$
c) $I_{1}=18 \mathrm{~mA}, \quad I_{2}=\frac{\Delta V_{B}}{R_{2}}=7.5 \mathrm{~mA}$
d) I_{2} continues, $\left|I_{1}\left(t_{0}\right)\right|=I_{2}=7.5 \mathrm{~mA} \uparrow$ (0.5)

The direction is opposite to the original $I_{1} 0.5$
e) Tu pass $I_{2}=7.5 \mathrm{~mA}$ through the circuit with $R_{e q}=R_{1}+R_{2}=1.7 \mathrm{k} \Omega$ we need

$$
\begin{align*}
\varepsilon=R_{e q} I_{2} & =1.7 \times 10^{3} \cdot 7.5 \times 10^{-3} \mathrm{~V} \\
& =12.75 \mathrm{~V}=13 \mathrm{~V}
\end{align*}
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$
$\exp ^{\prime}=\exp ; \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$
$f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area $W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\mathrm{in}}+K_{2}^{\mathrm{in}}=K_{1}^{\mathrm{fin}}+K_{2}^{\mathrm{fin}}$ for elastic collisions. $\vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\vec{F}_{\mathrm{C}}=\frac{k q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 k|\lambda|}{r}=\frac{2 k|Q|}{L r} \quad E_{\text {plane }}=\frac{|\eta|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}\right.$, pos \rightarrow neg $)$
$\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{Vl}}}{d x}$
$Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$
parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$
$\Delta V_{\text {loop }}=\sum_{i} \Delta V_{i}=0 \quad \sum I_{\text {in }}=\sum I_{\text {out }}$
$P=\Delta V I \quad$ watt $=\mathrm{W}=\mathrm{VA} \quad P_{R}=\Delta V_{R} I=I^{2} R$
$\tau=R C \quad Q(t)=Q_{0} e^{-t / \tau} \quad I(t)=-\frac{d Q}{d t}=\frac{\Delta V_{0}}{R} e^{-t / \tau}$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \vec{r}}{r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{I \Delta \vec{\Delta} \times \vec{r}}{r^{3}} \quad B_{\text {wire }}=\frac{\mu_{0}}{2 \pi} \frac{I}{d}$ (use RH rule) $\quad \frac{\mu_{0}}{4 \pi}=10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}} \quad$ tesla $=\mathrm{T}=\frac{\mathrm{N}}{\mathrm{Am}}$
short coil, $R \gg L$ (N turns): $B_{\text {coil, centre }}=\frac{\mu_{0} N I}{2 R} \quad$ solenoid, $L \gg R: B_{\text {sol, inside }}=\frac{\mu_{0} N I}{L}$ mag dipole: $\vec{\mu}=(A I$, from south to north $) \quad \vec{B}_{\text {dip }}=\frac{\mu_{0} 2 \vec{\mu}}{4 \pi} z^{3}$ on axis, far away
$\vec{F}_{\text {on } q}=q \vec{v} \times \vec{B} \quad$ force on current \perp to $\vec{B}: F_{\text {wire }}=I L B$
force betw. parallel wires: $F_{2 \text { wires }}=\frac{\mu_{0} L I_{1} I_{2}}{2 \pi d} \quad$ torque on mag dipole: $\vec{\mu}$ in $\vec{B}: \vec{\tau}=\vec{\mu} \times \vec{B}$
bar (length L) moves w. $\vec{v} \perp \vec{B}$ gen. EMF: $\varepsilon=v L B$;
$\Phi_{m}=\vec{A} \cdot \vec{B} \quad \Phi_{m}=A B \cos \theta \quad \varepsilon=\left|\frac{d \Phi_{m}}{d t}\right|=\left|\vec{B} \cdot \frac{d \vec{A}}{d t}+\vec{A} \cdot \frac{d \vec{B}}{d t}\right|$
$L=\frac{\Phi_{m}}{I} \quad$ henry $=\mathrm{H}=\frac{\mathrm{Tm}^{2}}{\mathrm{~A}} \quad \varepsilon_{\text {coil }}=L\left|\frac{d I}{d t}\right| \quad \Delta V_{L}=-L \frac{d I}{d t} \quad \mathrm{PE}_{L}=\frac{L}{2} I^{2}$
series L and R: $\tau=\frac{L}{R} \quad I(t)=I_{0}\left(1-e^{-t / \tau}\right)$

