LAST NAME:

STUDENT NR:

PHYS 1010 6.0: CLASS TEST 5 $\,$

Time: 50 minutes; Calculators & formulae provided at the end = only aid; Total = 20 points.

1) [5] The capacitor in the circuit shown is initially uncharged. a) What is the battery current right after switch S_1 is closed? b) S_1 was closed now for a long time. At time t_1 simultaneously S_1 is opened and S_2 is closed. What is the current through S_2 at this instant. c) A long time later $t_2 >> t_1$ (while S_2 is closed) what is the the current through S_2 ?

$$C = 90 \ \mu F, \ R_{1} = 2.2 \ k \Omega,$$

$$\Delta V_{g} = 3.0 \ V, \ R_{2} = 4.9 \ k \Omega$$

$$AV_{g} = 3.0 \ V, \ R_{2} = 4.9 \ k \Omega,$$

$$\Delta V_{g} = 3.0 \ V, \ R_{2} = 4.9 \ k \Omega,$$

$$\Delta V_{g} = \frac{5}{2} \ L_{V_{g}} \qquad \frac{5}{2} \ L_{V_{g}} \ L_{V_{g}} \qquad \frac{5}{2} \ L_{V_{g}} \qquad \frac{5}{2} \ L_{$$

2) [5] An alpha particle is a helium nucleus (two protons and two neutrons bound together). If it moves along the positive y-axis and experiences a magnetic force along the negative z-axis, what can you conclude about the direction of \vec{B} ? Begin with a sketch indicating all vectors involved, and explain your reasoning.

The magnetic field is along the positive x-axis

$$\vec{B} = (B, 0, 0) = B\hat{L}$$
By the RH rule

3) [5] A circular loop of wire lies in the x - y plane. A time-varying magnetic field is given as B = (0, 0, -B(t)), with the field strength B(t) decreasing over time. a) Explain the direction of the induced current. (b) The wire loop has a resistance of $R = 1\Omega$, and a diameter of 1 cm. The constant rate at which the field decreases is -0.1 T/s. Calculate the current in the loop and the power dissipated.

4) [5] In the diagram shown switch S was open a long time, and it is closed at t = 0. a) What is the current I_1 and I_2 through R_1 and R_2 respectively at t = 0, just when S is closed? b) What is the voltage across inductor L at t = 0 (S closed), i.e., $\Delta V_L(0)$? c) S was closed now for a long time. What are the currents I_1 , I_2 (through R_1 , R_2 respectively), and the inductor voltage ΔV_L ? d) A long time later S is re-opened at t_0 . What is the magnitude and direction of $I_1(t_0)$ (after re-opening)? e) What is the inductor voltage $\Delta V_L(t_0)$ at this time?

$\Delta V_{B} = 9.0 V, R_{I} = 0.5 k\Omega, \qquad \qquad$
$R_2 = 1.2 k \mathcal{D}, L = 3.0 m H$ $\frac{1}{T_{\Delta V_R}} R_1 R_1 R_1$
a) $T_1 = \frac{\Delta V_B}{R_1} = 18 \text{ mA} (0.5)$
$I_2 = 0 (0,5) \qquad b) \Delta V_L(0) = -\Delta V_B (0,5)$
c) $I_1 = 18 \text{ mA}$, $I_2 = \frac{\Delta V_B}{R_2} = 7.5 \text{ mA}$ (0.5)
d) I_2 continues, $ I_1(t_0) = I_2 = 7.5 \text{ mA} \uparrow 0.5$ The direction is opposite to the original $I_1 = 0.5$
e) To pass $I_2 = 7.5 \text{ mA}$ through the circuit with $R_{eq} = R_1 \pm R_2 = 1.7 \text{ kp}$ we need
$\mathcal{E} = R_{eq} I_2 = 1.7 \times 10^3 \cdot 7.5 \times 10^3 V$
= 12.75 V = 13 V (1.5)

FORMULA SHEET

 $v(t_{\rm f}) = v(t_{\rm i}) + \int_{t_{\rm i}}^{t_{\rm f}} a(t) dt$ $s(t_{\rm f}) = s(t_{\rm i}) + \int_{t_{\rm i}}^{t_{\rm f}} v(t) dt$ $v_{\rm f} = v_{\rm i} + a\Delta t$ $s_{\rm f} = s_{\rm i} + v_{\rm i}\Delta t + \frac{1}{2}a\Delta t^2$ $v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta s$ $q = 9.8 \text{ m/s}^2$ f(t) = t $\frac{df}{dt} = 1$ $F(t) = \int f(t) dt = \frac{t^2}{2} + C$ F(t) =anti-derivative = indefinite integral $f(t) = a \quad \frac{df}{dt} = 0 \quad F(t) = \int f(t) \ dt = at + C$ area under the curve f(t) between limits t_1 and t_2 : $F(t_2) - F(t_1)$ $x^{2} + px + q = 0$ factored by: $x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4} - q}$ uniform circular m. $\vec{r}(t) = R(\cos \omega t \ \hat{\mathbf{i}} + \sin \omega t \ \hat{\mathbf{j}}); \ \vec{v}(t) = \frac{d\vec{r}}{dt} = ...; \ \vec{a}(t) = \frac{d\vec{v}}{dt} =$ $\exp' = \exp; \quad \sin' = \cos; \quad \cos' = -\sin. \qquad \frac{d}{dx} [f(g(x))] = \frac{df}{dg} \frac{dg}{dx}; \qquad (fg)' = f'g + fg'$ $m\vec{a} = \vec{F}_{\rm net}; \quad F_G = \frac{Gm_1m_2}{r^2}; \ g = \frac{GM_E}{R_E^2}; \ R_E = 6370 \ {\rm km}; \ G = 6.67 \times 10^{-11} \frac{{\rm Nm}^2}{{\rm kg}^2}; \ M_E = 6.0 \times 10^{24} {\rm kg}$ $f_{\rm s} \le \mu_{\rm s} n;$ $f_{\rm k} = \mu_{\rm k} n;$ $f_{\rm r} = \mu_{\rm r} n;$ $\mu_{\rm r} << \mu_{\rm k} < \mu_{\rm s}.$ $F_H = -k\Delta x = -k(x - x_0).$ $\vec{F}_{\rm d} \sim -\vec{v}$; linear: $F_{\rm d} = dv$; quadratic: $F_{\rm d} = 0.5\rho Av^2$; A =cross sectional area $W = F\Delta x = F(\Delta r)\cos\theta$. $W = \text{area under } F_x(x)$. $PE_{\mathrm{H}} = \frac{k}{2}(\Delta x)^2$; $PE_g = mg\Delta y$. $\Delta \vec{p} = \vec{J} = \int \vec{F}(t) dt; \ \Delta p_x = J_x = \text{area under } F_x(t) = F_x^{\text{avg}} \Delta t \ ; \quad \vec{p} = m\vec{v}; \ K = \frac{m}{2}v^2$ $\Delta \vec{p_1} + \Delta \vec{p_2} = 0$; $K_1^{\text{in}} + K_2^{\text{in}} = K_1^{\text{fin}} + K_2^{\text{fin}}$ for elastic collisions. $\vec{a}_{\text{CM}} = \frac{m_1 \vec{a}_1 + m_2 \vec{a}_2}{m_1 + m_2}$ $\vec{\tau} = \vec{r} \times \vec{F}$; $\tau_z = rF\sin(\alpha)$ for \vec{r} , \vec{F} in xy plane. $I = \sum_i m_i r_i^2$; $I\alpha_z = \tau_z$; $(\hat{k} = \text{rot. axis})$ $K_{\rm rot} = \frac{I}{2}\omega^2; \ L_z = I\omega_z; \ \frac{d}{dt}L_z = \tau_z; \ \vec{L} = \vec{r} \times \vec{p}; \ \frac{d}{dt}\vec{L} = \vec{\tau}$ $x(t) = \overline{A}\cos(\omega t + \phi);$ $\omega = \frac{2\pi}{T} = 2\pi f;$ $v_x(t) = ...;$ $v_{\max} = ...$ $m_{\rm e} = 9.11 \times 10^{-31} \text{kg}$ $m_{\rm p} = 1.67 \times 10^{-27} \text{kg}$ $e = 1.60 \times 10^{-19} \text{C}$ $k = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2}$ $\vec{F}_{\rm C} = \frac{kq_1q_2}{r^2} \hat{\mathbf{r}} \quad \vec{F}_{\rm E} = q\vec{E} \quad E_{\rm line} = \frac{2k|\lambda|}{r} = \frac{2k|Q|}{Lr} \quad E_{\rm plane} = \frac{|\eta|}{2\epsilon_0} = \frac{|Q|}{2A\epsilon_0} \quad \vec{E}_{\rm cap} = \left(\frac{Q}{\epsilon_0 A}, \text{pos} \to \text{neg}\right)$ $\frac{mv^2}{2} + U_{\rm el}(s) = \frac{mv_0^2}{2} + U_{\rm el}(s_0), \ (U \equiv PE_{\rm el}) \quad U_{\rm el} = qEx \text{ for } \vec{E} = -E \hat{i} \quad V_{\rm el} = U_{\rm el}/q \quad E_x = -\frac{dV_{\rm el}}{dx}$ $Q = C\Delta V_C$ farad = F = $\frac{C}{V}$ $C = \frac{\epsilon_0 A}{d}$ $\epsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$ parallel C_1, C_2 : $C_{eq} = C_1 + C_2$ series C_1, C_2 : $C_{eq}^{-1} = C_1^{-1} + C_2^{-1}$ $\Delta V_{\text{loop}} = \sum_{i} \Delta V_{i} = 0$ $\sum I_{\text{in}} = \sum I_{\text{out}}$ $P = \Delta VI$ watt = W = VA $P_R = \Delta V_R I = I^2 R$ $\tau = RC \qquad Q(t) = Q_0 e^{-t/\tau} \qquad I(t) = -\frac{dQ}{dt} = \frac{\Delta V_0}{R} e^{-t/\tau}$ $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I\Delta \vec{s} \times \vec{r}}{r^3} \qquad B_{\text{wire}} = \frac{\mu_0}{2\pi} \frac{I}{d} \text{ (use RH rule)} \qquad \frac{\mu_0}{4\pi} = 10^{-7} \frac{\text{Tm}}{\text{A}} \qquad \text{tesla} = \text{T} = \frac{\text{N}}{\text{Am}}$ short coil, R >> L (N turns): $B_{\text{coil,centre}} = \frac{\mu_0 NI}{2R}$ solenoid, L >> R: $B_{\text{sol,inside}} = \frac{\mu_0 NI}{L}$ mag dipole: $\vec{\mu} = (AI, \text{from south to north})$ $\vec{B}_{\text{dip}} = \frac{\mu_0}{4\pi} \frac{2\vec{\mu}}{z^3}$ on axis, far away $\vec{F}_{onq} = q\vec{v} \times \vec{B}$ force on current \perp to \vec{B} : $F_{wire} = ILB$ force betw. parallel wires: $F_{2\text{wires}} = \frac{\mu_0 L I_1 I_2}{2\pi d}$ torque on mag dipole: $\vec{\mu}$ in \vec{B} : $\vec{\tau} = \vec{\mu} \times \vec{B}$ bar (length L) moves w. $\vec{v} \perp \vec{B}$ gen. EMF: $\varepsilon = vLB$; $\Phi_m = \vec{A} \cdot \vec{B} \quad \Phi_m = AB \cos \theta \quad \varepsilon = \left| \frac{d\Phi_m}{dt} \right| = \left| \vec{B} \cdot \frac{d\vec{A}}{dt} + \vec{A} \cdot \frac{d\vec{B}}{dt} \right|$ $L = \frac{\Phi_m}{I}$ henry $= H = \frac{Tm^2}{A}$ $\varepsilon_{coil} = L \left| \frac{dI}{dt} \right|$ $\Delta V_L = -L \frac{dI}{dt}$ $PE_L = \frac{L}{2}I^2$ series L and R: $\tau = \frac{L}{R}$ $I(t) = I_0(1 - e^{-t/\tau})$