PHYS 1010 6.0: CLASS TEST 6
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) A current loop with a resistance $R=250 \Omega$ and an area $A=0.4 \mathrm{~m}^{2}$ is oriented perpendicular to a magnetic field that varies in time according to $B(t)=0.5 t(1-t)(t$ and B are in SI units). What is the current induced in the loop at $t=0 \mathrm{~s}$, at $t=0.5 \mathrm{~s}$, and at $t=1 \mathrm{~s}$?
Faraday

$$
\begin{align*}
\varepsilon & =-\frac{d \phi_{M}}{d t}=-\frac{d}{d t}(B(t) A) \quad \begin{array}{c}
\text { (orientation } \\
\text { doesn't change) }
\end{array} \tag{1}\\
& =-A \frac{d B}{d t}=-A\left(\frac{1}{2}(1-t)+\frac{1}{2} t(-1)\right) \\
\varepsilon & =-\frac{A}{2}(1-2 t) \quad(\text { Volts ; in SI) }
\end{align*}
$$

Ohm's law: $I=\frac{\varepsilon}{R}=\frac{2 t-1}{500} 0.4=(2 t-1) 0.8 \times 10^{-3}$ orientation from len 2 ,
(1) $\left(\mathrm{A} ;\right.$ in $\left.S_{I}\right)$ not required hel
$\left.\begin{array}{lc}\text { a) } t=0: & -0.8 \mathrm{~mA} \\ \text { b) } t=0.5 \mathrm{~s}: & 0 \mathrm{~mA} \\ \text { c) } t=1.0 \mathrm{~s}: & +0.8 \mathrm{~mA}\end{array}\right\}$
absolute sign doesn't matter, but a) relative to b)
(1) for values does, i.e., direction reversal!
(1) for relative sign
2) A circular loop of wire lies in the $x-y$ plane so that the axis of the loop lies along z. A homogeneous (spatially uniform) magnetic field $B(t)$ is anti-parallel to the z-axis. $\left(B_{z}(t)<0\right.$, $B_{x}=B_{y}=0$). If $B(t)$ is decreasing with time, what is the direction of the induced current when viewed from above? Start with a drawing, and explain your steps and reasoning!
(\&)

Since $\vec{B}=\left(0,0, B_{2}(t)\right)$ is pointing into the plane, but is decreasing, \vec{B} ind points in to the RH rule:
The direction of the current is CW (1) (as viewed from above)
3) Two inductors L_{1} and L_{2} are connected in series to form an equivalent inductor $L_{\text {eq }}$. Together they are connected to an battery of voltage ΔV_{B} via a switch. Draw a circuit diagram depicting the situation. Formulate Kirchhoff's loop law for the circuit. Derive how $L_{\text {eq }}$ depends on L_{1} and L_{2}.

(we should add Whee for the ohmic R resistance in series in a realistic setting)
The least we need
is $R_{\text {int }}$ from the battery!
(0.5 for this)

$$
\Delta V_{B}\left\{\begin{array}{l}
0.5 \text { for this) } \\
R I \\
\rightarrow R_{\text {int }}+R_{L}+R_{\text {wise }}
\end{array} L_{2} \frac{d I}{d t}=0\right.
$$

The same current passes through
L_{1} and $L_{2} \Rightarrow$ the same $\frac{d I}{d t}$ acts in both

Equivalent circuit :

(can be shown
(1) as part of original circuit)

$$
\left.\begin{array}{c}
\Delta V_{B}-R I-L_{1} \frac{d I}{d t}-L_{2} \frac{d I}{d t}=0 \\
\Delta V_{B}-R I-L_{e q} \frac{d I}{d t}=0 \tag{1}
\end{array}\right\}
$$

4a) Consider a simple LC circuit (L and C in parallel) with values $C=1500 \mathrm{pF}$ and $L=20 \mathrm{mH}$. At $t=0$ the current is $I=45 \mathrm{~mA}$ and the charge on C is zero. Calculate the energy stored in the inductor at this time. At which time t_{1} will the current be zero (first occurrence after $t=0$). What is the charge in C at this time? Provide an accurate sketch of the charge as a function of time for two complete cycles.

$$
\begin{align*}
I_{0}=45 \times 10^{-3} \mathrm{~A} \quad C & =1.5 \times 10^{3} \times 10^{-12} \mathrm{~F} \\
L & =2 \times 10^{-2} \mathrm{H} \\
P E_{L}=\frac{1}{2} L I^{2} & =10^{-2} \times 45^{2} \times 10^{-6} \mathrm{~J}(\text { in SI }) \\
& =2.025 \times 10^{3} \times 10^{-8} \mathrm{~J} \\
& =2.0 \times 10^{-5} \mathrm{~J} \quad 0.5
\end{align*}
$$

Period of oscillation:

$$
\begin{align*}
& \omega=\frac{1}{\sqrt{L C}}=\frac{2 \pi}{T} \\
& T=2 \pi \sqrt{L C}= \\
& 6.28 \times \sqrt{1.5 \times 10^{-9} \times 0.02} \mathrm{~s} \\
& =0.344 E-4=3.4 \times 10^{-5} \mathrm{~s} \\
& =34 \mu \mathrm{~s} 0.5
\end{align*}
$$

Energy conservation: $\frac{C}{2} \Delta V^{2}=\frac{L}{2} I^{2}$

4b) The LC circuit of question 4 has the inductor replaced by a $L=20 \mu \mathrm{H}$ coil. What is the wavelength of the radiowaves that this circuit will catch on resonance?

$$
\begin{aligned}
& \omega=\frac{1}{\sqrt{L C}}=2 \pi f \quad f=\frac{1}{2 \pi \sqrt{l C}}
\end{aligned}=0.92 \times 10^{6} \mathrm{~Hz} .
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral
area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$.
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}$
$f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad \mathrm{PE}_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad \mathrm{PE}_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\mathrm{in}}+K_{2}^{\mathrm{in}}=K_{1}^{\mathrm{fin}}+K_{2}^{\mathrm{fin}} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\text {rot }}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad K=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\vec{F}_{\mathrm{C}}=\frac{K q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 K|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\eta|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}\right.$, pos \rightarrow neg $)$
$\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{el}}}{d x}$
$Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mathrm{PE}_{C}=\frac{C}{2} \Delta V_{C}{ }^{2}$
parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$
$\Delta V_{\text {loop }}=\sum_{i} \Delta V_{i}=0 \quad \sum I_{\text {in }}=\sum I_{\text {out }}$
$P=\Delta V I \quad$ watt $=\mathrm{W}=\mathrm{VA} \quad P_{R}=\Delta V_{R} I=I^{2} R$
$\tau=R C \quad Q(t)=Q_{0} e^{-t / \tau} \quad I(t)=-\frac{d Q}{d t}=\frac{\Delta V_{0}}{R} e^{-t / \tau}$

short coil, $R \gg L$ (N turns): $B_{\text {coil,centre }}=\frac{\mu_{0} N I}{2 R} \quad$ solenoid, $L \gg R: B_{\text {sol, inside }}=\frac{\mu_{0} N I}{L}$
mag dipole: $\vec{\mu}=(A I$, from south to north $) \quad \vec{B}_{\text {dip }}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{\mu}}{z^{3}}$ on axis, far away
$\vec{F}_{\text {on } q}=q \vec{v} \times \vec{B} \quad$ force on current \perp to $\vec{B}: F_{\text {wire }}=I L B$
force betw. parallel wires: $F_{2 \text { wires }}=\frac{\mu_{0} L I_{1} I_{2}}{2 \pi d}$ torque on mag dipole: $\vec{\mu}$ in $\vec{B}: \vec{\tau}=\vec{\mu} \times \vec{B}$ bar (length L) moves w. $\vec{v} \perp \vec{B}$ gen. EMF: $\varepsilon=v L B$;
$\Phi_{m}=\vec{A} \cdot \vec{B} \quad \Phi_{m}=A B \cos \theta \quad \varepsilon=\left|\frac{d \Phi_{m}}{d t}\right|=\left|\vec{B} \cdot \frac{d \vec{A}}{d t}+\vec{A} \cdot \frac{d \vec{B}}{d t}\right|$
$L=\frac{\Phi_{m}}{I} \quad$ henry $=\mathrm{H}=\frac{\mathrm{Tm}^{2}}{\mathrm{~A}} \quad \varepsilon_{\text {coil }}=L\left|\frac{d I}{d t}\right| \quad \Delta V_{L}=-L \frac{d I}{d t} \quad \mathrm{PE}_{L}=\frac{L}{2} I^{2}$
series L and R: $\tau=\frac{L}{R} \quad I(t)=I_{0} e^{-t / \tau}$; parallel L and C: $\omega=\sqrt{\frac{1}{L C}} \quad I(t)=\omega Q_{0} \sin \omega t$
$\lambda f=v_{\mathrm{w}} \quad$ sinusoid travelling in pos dir'n: $D(x, t)=A \sin \left(2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)+\phi_{0}\right)=A \sin \left(k x-\omega t+\phi_{0}\right)$
transverse wave on a string: $v_{\mathrm{w}}=\sqrt{\frac{T}{\mu}}$ where T is tension, $\mu=M / L$
$\omega=v_{\mathrm{w}} k \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$ in air at $\mathrm{T}=20^{\circ} \mathrm{C} \quad$ in water: $v_{\text {sound }}=1480 \mathrm{~m} / \mathrm{s}$
light in vac.: $v_{\mathrm{w}}=c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad$ visible: $\lambda=400 \mathrm{~nm}$ (blue $/ \mathrm{UV}$); $\lambda=700 \mathrm{~nm}$ (red/IR)
refraction: $n_{\text {glass }}=1.5 ; n_{\text {water }}=1.333$; light in medium: c / n; wavelength: $\lambda_{\text {vac }} / n$
approaching source (speed v_{s}): $f_{+}=\frac{f_{0}}{1-v_{\mathrm{s}} / v_{\mathrm{w}}} \quad$ receding: $f_{-}=\frac{f_{0}}{1+v_{\mathrm{s}} / v_{\mathrm{w}}}$
$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \quad \sin \alpha+\sin \beta=2 \cos \frac{\alpha-\beta}{2} \sin \frac{\alpha+\beta}{2}$
transverse standing wave, string length $L: \lambda_{n}=\frac{2 L}{n} \quad n=1,2, \ldots \quad f_{n}$ from $\lambda_{n} f_{n}=c_{\mathrm{w}}$

