LAST NAME:

(

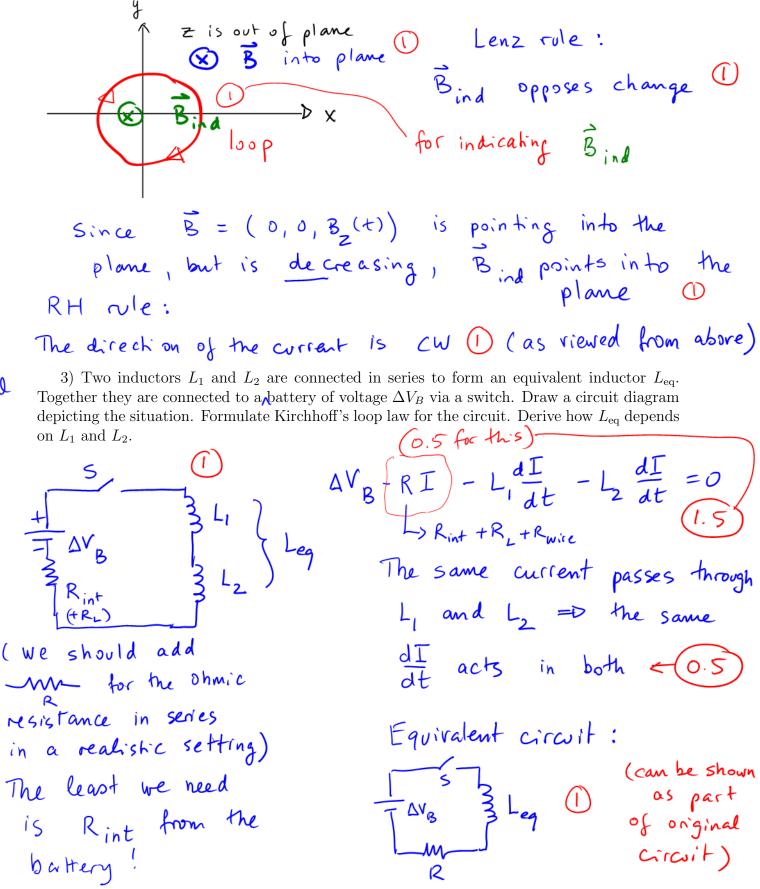
STUDENT NR:

PHYS 1010 6.0: CLASS TEST 6

Time: 50 minutes; Calculators & formulae provided at the end = only aid; Total = 20 points.

1) A current loop with a resistance $R = 250 \Omega$ and an area $A = 0.4 \text{ m}^2$ is oriented perpendicular to a magnetic field that varies in time according to B(t) = 0.5t(1-t) (t and B are in SI units). What is the current induced in the loop at t = 0 s, at t = 0.5 s, and at t = 1 s?

2) A circular loop of wire lies in the x - y plane so that the axis of the loop lies along z. A homogeneous (spatially uniform) magnetic field B(t) is anti-parallel to the z-axis. ($B_z(t) < 0$, $B_x = B_y = 0$). If B(t) is decreasing with time, what is the direction of the induced current when viewed from above? Start with a drawing, and explain your steps and reasoning!

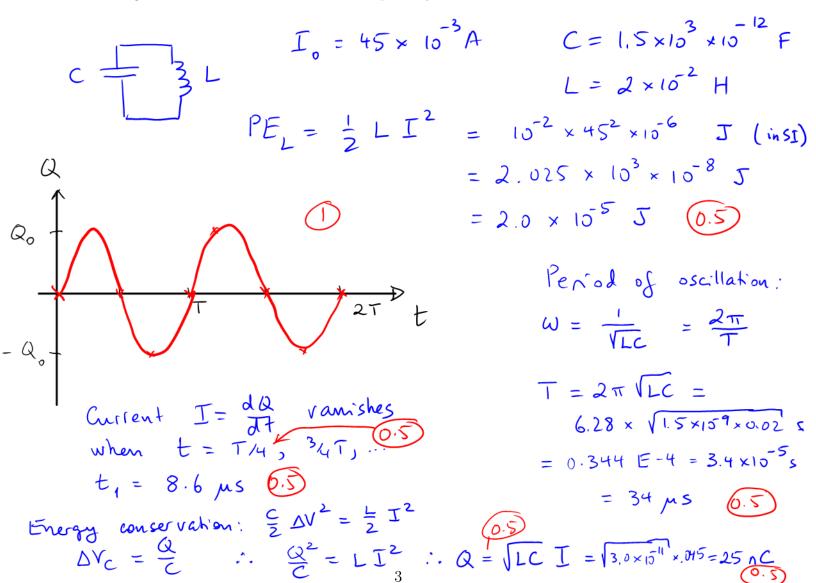


$$\Delta V_{B} - RI - L_{1} \frac{dI}{dt} - L_{2} \frac{dI}{dt} = 0$$

$$V_{S} \Delta V_{B} - RI - L_{eq} \frac{dI}{dt} = 0$$

$$L_{eq} = (L_{1} + L_{2})$$
(1)

4a) Consider a simple LC circuit (L and C in parallel) with values C = 1500 pF and L = 20 mH. At t = 0 the current is I = 45 mA and the charge on C is zero. Calculate the energy stored in the inductor at this time. At which time t_1 will the current be zero (first occurrence after t = 0). What is the charge in C at this time? Provide an accurate sketch of the charge as a function of time for two complete cycles.



4b) The LC circuit of question 4 has the inductor replaced by a $L = 20 \ \mu\text{H}$ coil. What is the wavelength of the radiowaves that this circuit will catch on resonance?

FORMULA SHEET

 $v(t_{\rm f}) = v(t_{\rm i}) + \int_{t_{\rm i}}^{t_{\rm f}} a(t) dt$ $s(t_{\rm f}) = s(t_{\rm i}) + \int_{t_{\rm i}}^{t_{\rm f}} v(t) dt$ $v_{\rm f} = v_{\rm i} + a\Delta t$ $s_{\rm f} = s_{\rm i} + v_{\rm i}\Delta t + \frac{1}{2}a\Delta t^2$ $v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta s$ $g = 9.8 \text{ m/s}^2$ f(t) = t $\frac{df}{dt} = 1$ $F(t) = \int f(t) dt = \frac{t^2}{2} + C$ f(t) = a $\frac{df}{dt} = 0$ $F(t) = \int f(t) dt = at + C$ F(t) =anti-derivative = indefinite integral area under the curve f(t) between limits t_1 and t_2 : $F(t_2) - F(t_1)$ $x^{2} + px + q = 0$ factored by: $x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4} - q}$ uniform circular m. $\vec{r}(t) = R(\cos \omega t \ \hat{\mathbf{i}} + \sin \omega t \ \hat{\mathbf{j}}); \ \vec{v}(t) = \frac{d\vec{r}}{dt} = ...; \ \vec{a}(t) = \frac{d\vec{v}}{dt} =$ $\exp' = \exp; \quad \sin' = \cos; \quad \cos' = -\sin. \qquad \frac{d}{dx} [f(g(x))] = \frac{df}{dg} \frac{dg}{dx}; \qquad (fg)' = f'g + fg'$ $m\vec{a} = \vec{F}_{\text{net}};$ $F_G = \frac{Gm_1m_2}{r^2}; g = \frac{GM_E}{R_E^2}; R_E = 6370 \text{ km}; G = 6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2}; M_E = 6.0 \times 10^{24} \text{kg}^2$ $f_{\rm s} \le \mu_{\rm s} n; \quad f_{\rm k} = \mu_{\rm k} n; \quad f_{\rm r} = \mu_{\rm r} n; \quad \mu_{\rm r} << \mu_{\rm k} < \mu_{\rm s}. \qquad F_H = -k\Delta x = -k(x - x_0).$ $\vec{F}_{\rm d} \sim -\vec{v}$; linear: $F_{\rm d} = dv$; quadratic: $F_{\rm d} = 0.5\rho Av^2$; A =cross sectional area $W = F\Delta x = F(\Delta r)\cos\theta$. $W = \text{area under } F_x(x)$. $PE_H = \frac{k}{2}(\Delta x)^2$; $PE_g = mg\Delta y$. $\Delta \vec{p} = \vec{J} = \int \vec{F}(t) dt; \ \Delta p_x = J_x = \text{area under } F_x(t) = F_x^{\text{avg}} \Delta t; \quad \vec{p} = m\vec{v}; \ K = \frac{m}{2}v^2$ $\Delta \vec{p}_1 + \Delta \vec{p}_2 = 0$; $K_1^{\text{in}} + K_2^{\text{in}} = K_1^{\text{fin}} + K_2^{\text{fin}}$ for elastic collisions. $\vec{a}_{\text{CM}} = \frac{m_1 \vec{a}_1 + m_2 \vec{a}_2}{m_1 + m_2}$ $\vec{\tau} = \vec{r} \times \vec{F}$; $\tau_z = rF\sin(\alpha)$ for \vec{r} , \vec{F} in xy plane. $I = \sum_i m_i r_i^2$; $I\alpha_z = \tau_z$; $(\hat{k} = \text{rot. axis})$ $K_{\rm rot} = \frac{I}{2}\omega^2; \ L_z = I\omega_z; \ \frac{d}{dt}L_z = \tau_z; \ \vec{L} = \vec{r} \times \vec{p}; \ \frac{d}{dt}\vec{L} = \vec{\tau}$ $x(t) = \overline{A}\cos(\omega t + \phi);$ $\omega = \frac{2\pi}{T} = 2\pi f;$ $v_x(t) = ...;$ $v_{\max} = ...$ $m_{\rm e} = 9.11 \times 10^{-31} {\rm kg}$ $m_{\rm p} = 1.67 \times 10^{-27} {\rm kg}$ $e = 1.60 \times 10^{-19} {\rm C}$ $K = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 \frac{{\rm Nm}^2}{{\rm C}^2}$ $\vec{F}_{\rm C} = \frac{Kq_1q_2}{r^2} \hat{\mathbf{r}} \quad \vec{F}_{\rm E} = q\vec{E} \quad E_{\rm line} = \frac{2K|\lambda|}{r} = \frac{2K|Q|}{Lr} \quad E_{\rm plane} = \frac{|\eta|}{2\epsilon_0} = \frac{|Q|}{2A\epsilon_0} \quad \vec{E}_{\rm cap} = \left(\frac{Q}{\epsilon_0 A}, \text{pos} \to \text{neg}\right)$ $\frac{mv^2}{2} + U_{\rm el}(s) = \frac{mv_0^2}{2} + U_{\rm el}(s_0), \ (U \equiv PE_{\rm el}) \quad U_{\rm el} = qEx \text{ for } \vec{E} = -E \hat{i} \quad V_{\rm el} = U_{\rm el}/q \quad E_x = -\frac{dV_{\rm el}}{dx}$

 $Q = C\Delta V_C \quad \text{farad} = \mathbf{F} = \frac{\mathbf{C}}{\mathbf{V}} \quad C = \frac{\epsilon_0 A}{d} \quad \epsilon_0 = 8.85 \times 10^{-12} \frac{\mathbf{C}^2}{\mathbf{Nm}^2} \quad \mathbf{PE}_C = \frac{C}{2} \Delta V_C^2$ parallel C_1, C_2 : $C_{eq} = C_1 + C_2$ series C_1, C_2 : $C_{eq}^{-1} = C_1^{-1} + C_2^{-1}$ $\Delta V_{\text{loop}} = \sum_{i} \Delta V_{i} = 0$ $\sum I_{\text{in}} = \sum I_{\text{out}}$ $P = \Delta VI$ watt = W = VA $P_R = \Delta V_R I = I^2 R$ $\tau = RC \qquad Q(t) = Q_0 e^{-t/\tau} \qquad I(t) = -\frac{dQ}{dt} = \frac{\Delta V_0}{R} e^{-t/\tau}$ $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{I\Delta \vec{s} \times \vec{r}}{r^3} \quad B_{\text{wire}} = \frac{\mu_0}{2\pi} \frac{I}{d} \text{ (use RH rule)} \quad \frac{\mu_0}{4\pi} = 10^{-7} \frac{\text{Tm}}{\text{A}} \quad \text{tesla} = \text{T} = \frac{\text{N}}{\text{Am}}$ short coil, R >> L (N turns): $B_{\text{coil,centre}} = \frac{\mu_0 NI}{2R}$ solenoid, L >> R: $B_{\text{sol,inside}} = \frac{\mu_0 NI}{L}$ mag dipole: $\vec{\mu} = (AI, \text{from south to north})$ $\vec{B}_{\text{dip}} = \frac{\mu_0}{4\pi} \frac{2\vec{\mu}}{z^3}$ on axis, far away $\vec{F}_{onq} = q\vec{v} \times \vec{B}$ force on current \perp to \vec{B} : $F_{wire} = ILB$ force betw. parallel wires: $F_{2\text{wires}} = \frac{\mu_0 L I_1 I_2}{2\pi d}$ torque on mag dipole: $\vec{\mu}$ in \vec{B} : $\vec{\tau} = \vec{\mu} \times \vec{B}$ bar (length L) moves w. $\vec{v} \perp \vec{B}$ gen. EMF: $\varepsilon = vLB$; $\Phi_m = \vec{A} \cdot \vec{B} \quad \Phi_m = AB \cos \theta \quad \varepsilon = \left| \frac{d\Phi_m}{dt} \right| = \left| \vec{B} \cdot \frac{d\vec{A}}{dt} + \vec{A} \cdot \frac{d\vec{B}}{dt} \right|$ $L = \frac{\Phi_m}{I} \quad \text{henry} = \mathbf{H} = \frac{\mathbf{T}\mathbf{m}^2}{\mathbf{A}} \quad \varepsilon_{\text{coil}} = L \left| \frac{dI}{dt} \right| \quad \Delta V_L = -L \frac{dI}{dt} \quad \mathbf{P}\mathbf{E}_L = \frac{L}{2}I^2$ series L and R: $\tau = \frac{L}{R}$ $I(t) = I_0 e^{-t/\tau}$; parallel L and C: $\omega = \sqrt{\frac{1}{LC}}$ $I(t) = \omega Q_0 \sin \omega t$ $\lambda f = v_{\rm w}$ sinusoid travelling in pos dir'n: $D(x,t) = A\sin\left(2\pi\left(\frac{x}{\lambda} - \frac{t}{T}\right) + \phi_0\right) = A\sin\left(kx - \omega t + \phi_0\right)$ transverse wave on a string: $v_{\rm w} = \sqrt{\frac{T}{\mu}}$ where T is tension, $\mu = M/L$ $\omega = v_{\rm w} k$ $v_{\text{sound}} = 343 \text{m/s}$ in air at $T = 20^{\circ}\text{C}$ in water: $v_{\text{sound}} = 1480 \text{m/s}$ light in vac.: $v_{\rm w} = c = 3.00 \times 10^8 {\rm m/s}$ visible: $\lambda = 400 {\rm nm} ({\rm blue/UV}); \lambda = 700 {\rm nm} ({\rm red/IR})$ refraction: $n_{\text{glass}} = 1.5$; $n_{\text{water}} = 1.333$; light in medium: c/n; wavelength: λ_{vac}/n approaching source (speed v_s): $f_+ = \frac{f_0}{1 - v_s/v_w}$ receding: $f_- = \frac{f_0}{1 + v_s/v_w}$ $\sin\left(\alpha \pm \beta\right) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta \quad \sin\alpha + \sin\beta = 2\cos\frac{\alpha-\beta}{2}\sin\frac{\alpha+\beta}{2}$ transverse standing wave, string length L: $\lambda_n = \frac{2L}{n}$ n = 1, 2, ... f_n from $\lambda_n f_n = c_w$