PHYS 1010 6.0: CLASS TEST 6
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] Consider the circuit shown. If the charge on the capacitor at a particular instant is $2.5 \times 10^{-8} \mathrm{C}$, and the energy stored in the capacitor is equal to the energy stored in the inductor, what is the current at that moment?

$$
\begin{aligned}
& P E_{C}=\frac{1}{2 C} Q^{2} \\
& P E_{L}=\frac{1}{2} L I^{2} \\
& \begin{array}{l}
C=5.0 \times 10^{-9} \mathrm{~F} \\
L=3.0 \times 10^{-2} \mathrm{H} \\
\end{array} \\
& L I^{2}=\frac{Q^{2}}{C} \quad \therefore \quad I^{2}=\frac{1}{L C} Q^{2} \quad Q=2.5 \times 10^{-8} \mathrm{C} \\
& \omega=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{5.0 \cdot 3.0 \cdot 10^{-11}}} \frac{\mathrm{rad}}{\mathrm{~s}},-\frac{1}{\sqrt{1.5}} 10^{5} \frac{\mathrm{rad}}{\mathrm{~s}}=8.16 \cdot 10^{4} \frac{\mathrm{rad}}{\mathrm{~s}} \\
& I(t)=\omega Q_{0} \sin \omega t=\frac{d \bar{Q}}{d t} \quad \therefore Q(t)=-Q_{0} \overline{\cos \omega t} \text { - } \\
& \text { we could dark from this, but it's more work! } \\
& I=\omega Q \quad\left(=\frac{1}{\sqrt{L C}} Q\right)
\end{aligned}
$$

we know $Q, \omega \therefore$

$$
\begin{aligned}
I\left(t_{1}\right)=8.16 \times 10^{4} \cdot 2.5 \times 10^{-8} \frac{C}{s} & =20.4 \times 10^{-4} \mathrm{~A} \\
Q\left(t_{1}\right) & =2.0 \mathrm{~mA}
\end{aligned}
$$

part marks can be given for $\omega \rightarrow$ (1)
and for deriving $I=\frac{1}{\sqrt{L C}} Q \rightarrow 2$

$$
=\omega Q
$$

2) [5] The law of Malus states that $I_{\text {out }}=I_{\text {in }} \cos ^{2} \theta$, and refers to the light intensity observed after a polarizer whose axis is rotated by θ with respect to the polarization axis of the incident light (assumed to be linearly polarized). Provide a short 2 -sentence explanation of the law based upon the electric field vectors $\vec{E}_{\text {in }}$ and $\vec{E}_{\text {out }}$. Now look at the figure: the original light source is linearly polarized with unknown polarization angle ϕ (with respect to the vertical). The second polarizer has a polarization axis of $\theta=30^{\circ}$ with respect to the vertical, which is the orientation for polarizer 1. If the intensity observed after the two polarizers is one half the original source intensity, what was the angle ϕ ?
3) $\vec{E}_{\text {source }}$ needs to be deco
(1) along P_{1} axis and its perpendicular (which is blocked)

4) The intensity $I \sim E^{2}(1) \therefore$
After $P_{1}: I_{1}=I_{\text {source }} \cos ^{2} \phi$

$$
\begin{align*}
& \text { After } P_{2}: I_{2}=I_{1} \cos ^{2} \theta=I_{\text {source }} \cos ^{2} \phi \cos ^{2} \theta \\
& I_{2}=I_{\text {source }} \cos ^{2} \phi \cos ^{2}\left(30^{\circ}\right)=I_{\text {source }} \cos ^{2} \phi \cdot 3 / 4 \\
& I_{2}=\frac{1}{2} I_{\text {source }}=\frac{3}{4} I_{\text {source }} \cos ^{2} \phi \\
& \therefore \cos ^{2} \phi=2 / 3 \text { (1) } \cos \phi=\sqrt{2 / 3} \\
& \phi=\cos ^{-1}(\sqrt{2} / 3)=0.615 \mathrm{rad}=35.3^{\circ} \\
& \cos 30^{\circ}=\sqrt{\circ}=1 / 2 \\
& \phi=35^{\circ}
\end{align*}
$$

3) [5] The figure shows an experiment where two loudspeakers are driven by exactly the same signal. If the interference at point P is destructive, provide two possible values for the frequency of the sound.

The path length difference should be $\lambda / 2$, or $\frac{3 \lambda}{2}$, (1) (or $\frac{2 n+1}{2} \lambda$ for $n=0,1,2, \ldots$)

The path for speaker 2 is: $\frac{4.0}{L_{2}}=\cos 35^{\circ}=0.819$

$$
\begin{align*}
L_{2}=\frac{4.0}{\cos 35^{\circ}} \mathrm{m} \quad \therefore \quad \Delta L & =L_{2}-L_{1}=4.0\left(\frac{1}{\cos 35^{\circ}}-1\right) \\
& =0.884 \mathrm{~m} \tag{1}
\end{align*}
$$

condition (1): $\Delta L=\frac{\lambda}{2} \quad \therefore \quad \lambda_{1}=2 \Delta L=1.77 \mathrm{~m}$
(2) $\Delta L=\frac{3 \lambda}{2} \therefore \lambda_{2}=\frac{2}{3} \Delta L=0.589 \mathrm{~m}$

Frequencies follow from $\lambda_{n} f_{n}=c_{s}=343 \mathrm{~m} / \mathrm{s}$ (1)

$$
\begin{array}{r}
f_{1}=\frac{C_{3}}{\lambda_{1}}=\frac{343}{2 \Delta L}=194 \mathrm{~Hz} \\
\simeq 190 \mathrm{~Hz} \tag{1}\\
f_{2}=\frac{C_{5}}{\lambda_{2}}=\frac{343}{2 / 3 \Delta L}=582 \mathrm{~Hz} \\
\\
\simeq 580 \mathrm{~Hz} \\
\left(f_{3}=\ldots\right)
\end{array}
$$

4) [5] The siren in an ambulance is approaching you with a speed v, and you perceive the sound to have a frequency of 1200 Hz . The ambulance makes a U turn, and when it reaches speed v again you hear the siren at 1000 Hz . What was the speed v ?

$$
\begin{aligned}
& \text { Two unknowns: } f_{\text {sro }} \text {, v, given } f_{+} \text {, } f_{-} \\
& f_{+}=\frac{f_{s r c}}{1-v / v_{s}} \\
& \text { (1) } f_{-}=\frac{f_{s r c}}{1+v / v_{s}} \\
& \text { (1) } v_{s}=343 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { eliminate } f_{\text {sic }} \text { : } \\
& \left(1-\frac{v}{v_{s}}\right) f_{+}=\left(1+\frac{v}{v_{s}}\right) f_{-} \quad \text { call } x=\frac{v}{v_{s}} \\
& (1-x) 1200=(1+x) 1000 \\
& =10+10 x \\
& v=\frac{343}{11} \frac{\mathrm{~m}}{\mathrm{~s}}=31.2 \mathrm{~m} / \mathrm{s} \\
& \left(=112 \frac{\mathrm{~km}}{\mathrm{~h}}\right)
\end{aligned}
$$

which is possible (fast)

FORMULA SHEET
$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral
area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\text {net }} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area $W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\text {in }}+K_{2}^{\text {in }}=K_{1}^{\text {fin }}+K_{2}^{\text {fin }} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\text {rot }}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad K=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$ $\vec{F}_{\mathrm{C}}=\frac{K q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 K|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\eta|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}, \operatorname{pos} \rightarrow \mathrm{neg}\right)$ $\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{el}}}{d x}$ $Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mathrm{PE}_{C}=\frac{Q^{2}}{2 C}$
parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$
$\Delta V_{\text {loop }}=\sum_{i} \Delta V_{i}=0 \quad \sum I_{\text {in }}=\sum I_{\text {out }}$
$P=\Delta V I \quad$ watt $=\mathrm{W}=\mathrm{VA} \quad P_{R}=\Delta V_{R} I=I^{2} R$
$\tau=R C \quad Q(t)=Q_{0} e^{-t / \tau} \quad I(t)=-\frac{d Q}{d t}=\frac{\Delta V_{0}}{R} e^{-t / \tau}$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \vec{r}}{r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{I \Delta \overrightarrow{\Delta x} \times \vec{r}}{r^{3}} \quad B_{\text {wire }}=\frac{\mu_{0}}{2 \pi} \frac{I}{d}$ (use RH rule) $\quad \frac{\mu_{0}}{4 \pi}=10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}} \quad$ tesla $=\mathrm{T}=\frac{\mathrm{N}}{\mathrm{Am}}$
short coil, $R \gg L$ (N turns): $B_{\text {coil, centre }}=\frac{\mu_{0} N I}{2 R} \quad$ solenoid, $L \gg R: B_{\text {sol, inside }}=\frac{\mu_{0} N I}{L}$
mag dipole: $\vec{\mu}=(A I$, from south to north $) \quad \vec{B}_{\text {dip }}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{\mu}}{z^{3}}$ on axis, far away
$\vec{F}_{\text {on } q}=q \vec{v} \times \vec{B} \quad$ force on current \perp to $\vec{B}: F_{\text {wire }}=I L B$
force betw. parallel wires: $F_{2 \text { wires }}=\frac{\mu_{0} L I_{1} I_{2}}{2 \pi d} \quad$ torque on mag dipole: $\vec{\mu}$ in $\vec{B}: \vec{\tau}=\vec{\mu} \times \vec{B}$
bar (length L) moves w. $\vec{v} \perp \vec{B}$ gen. EMF: $\varepsilon=v L B$;
$\Phi_{m}=\vec{A} \cdot \vec{B} \quad \Phi_{m}=A B \cos \theta \quad \varepsilon=\left|\frac{d \Phi_{m}}{d t}\right|=\left|\vec{B} \cdot \frac{d \vec{A}}{d t}+\vec{A} \cdot \frac{d \vec{B}}{d t}\right|$
$L=\frac{\Phi_{m}}{I} \quad$ henry $=\mathrm{H}=\frac{\mathrm{Tm}^{2}}{\mathrm{~A}} \quad \varepsilon_{\text {coil }}=L\left|\frac{d I}{d t}\right| \quad \Delta V_{L}=-L \frac{d I}{d t} \quad \mathrm{PE}_{L}=\frac{L}{2} I^{2}$
series L and R: $\tau=\frac{L}{R} \quad I(t)=I_{0}\left(1-e^{-t / \tau}\right) ;$ parallel L and C: $\omega=\sqrt{\frac{1}{L C}} \quad I(t)=\omega Q_{0} \sin \omega t$ $\lambda f=v_{\mathrm{w}} \quad$ sinusoid +ve x-dir'n: $D(x, t)=A \sin \left(2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)+\phi_{0}\right)=A \sin \left(k x-\omega t+\phi_{0}\right)$ transverse wave on a string: $v_{\mathrm{w}}=\sqrt{\frac{T}{\mu}}$ where T is tension, $\mu=M / L$ $\omega=v_{\mathrm{w}} k \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$ in air at $\mathrm{T}=20^{\circ} \mathrm{C} \quad$ in water: $v_{\text {sound }}=1480 \mathrm{~m} / \mathrm{s}$
light in vac.: $v_{\mathrm{w}}=c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad$ visible: $\lambda=400 \mathrm{~nm}$ (blue $/ \mathrm{UV}$); $\lambda=700 \mathrm{~nm}(\mathrm{red} / \mathrm{IR}$) medium: $n_{\text {glass }}=1.5 ; n_{\text {water }}=1.333$; speed: c / n; wavelength: $\lambda_{\text {vac }} / n$; acc. phase: $\phi=\frac{2 \pi n \Delta x}{\lambda_{\text {vac }}}$ src speed $v_{\text {src }}: f_{+}=\frac{f_{0}}{1-v_{\text {src }} / v_{\mathrm{w}}} ; f_{-}=\frac{f_{0}}{1+v_{\text {src }} / v_{\mathrm{w}}} ; \quad$ obs speed $v_{\text {obs }}: f_{+}=f_{0}\left(1+\frac{v_{o \text { obs }}}{v_{\mathrm{w}}}\right) ; f_{-}=f_{0}\left(1-\frac{v_{\text {obs }}}{v_{\mathrm{w}}}\right)$ $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \quad \sin \alpha+\sin \beta=2 \cos \frac{\alpha-\beta}{2} \sin \frac{\alpha+\beta}{2}$ transverse standing wave, string length $L: \lambda_{n}=\frac{2 L}{n} \quad n=1,2, \ldots \quad f_{n}$ from $\lambda_{n} f_{n}=c_{\mathrm{w}}$

