## Avoiding the Limit

During step $k$, the product $\Delta s_{k}=\left(v_{s}\right)_{k} \Delta t$ is the area

## $v_{s}$ of the shaded rectangle.



During the interval $t_{\mathrm{i}}$ to $t_{\mathrm{f}}$, the total displacement $\Delta s$ is the "area under the curve."

Integral Calculus uses a limit to define the area under the curve

Use the increased frame rate idea:
$v_{s}\left(t_{k}\right)$ becomes slowly varying
Area is estimated well assuming piecewise constant velocity
Sum the area from all rectangles:

$$
s_{\mathrm{f}} \approx s_{\mathrm{i}}+\sum_{k=1}^{N} v_{s}\left(t_{k}\right) \Delta t
$$

A partition of the $t$-axis consisting of $N$ points (frames) was used
A computational strategy that is practical and used often
In math define proper lower and upper sums and send $N \rightarrow \infty$ Lower and upper sums converge to the same number $\rightarrow$ integral is defined

## Example

When we release a slinky the velocity looks like a sine curve: it starts from zero, reaches a maximum, decreases to zero, becomes negative, reaches a minimum (most negative value), increases again, etc. (see previous graph with baseline moved)

Task: Create a partition with $N=3$ to reach the first maximum at $t \approx 1.57 \mathrm{~s}$, evaluate the displacement estimate, and compare with the Calculus result.
Solution: The time frames are spaced by $\Delta t=1.57 / 3=0.523 \mathrm{~s}$.
The time slices are then $t_{k}=(k-0.5) \Delta t$, i.e., $[0.262,0.784,1.31] \mathrm{s}$.
The velocities $\nu\left(t_{k}\right)=\sin \left(\omega t_{k}\right)$, where $\omega=2 \pi f 1 / \mathrm{s}$, and $\omega=1 / \mathrm{s}$ assumed, are calculated as [0.259,0 .706,0 .966] m/s.
Displacement estimate: $\Delta s=0.523(0.259+0.706+0.966) \mathrm{m}=1.011 \mathrm{~m}$.
Calculus result: Anti-derivative to sin is -cos, but we want $s(0)=0$ !
Thus, $s(t)=-\cos t+1$, where SI units are assumed ( $\omega=1 / \mathrm{s}$ ).
Evaluate: $s(1.57)=0.999 \mathrm{~m}$.
Calculus saves time, and is more accurate (exact).
In fact, Calculus gave us the answer for ALL times, not just $t=1.57 \mathrm{~s}$ !

## Velocity from Acceleration

Position from velocity is solved（Calculus－the better way） In a similar way we get velocity from acceleration By definition the instantaneous acceleration

$$
a_{s}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{s}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{v_{s}(t+\Delta t)-v_{s}(t)}{\Delta t}=\frac{\mathrm{d} v_{s}}{\mathrm{~d} t}
$$

（a）Motion at constant velocity

The velocity is constant．



The slope is $v_{s}$ ． －t


Straight line
（b）Motion at constant acceleration


Velocity change from acceleration：
（b）Motion at constant acceleration

The slope is $a_{s}$ ．

$$
v_{s}\left(t_{\mathrm{f}}\right)-v_{s}\left(t_{\mathrm{i}}\right)=\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a_{s}\left(t^{\prime}\right) \mathrm{d} t^{\prime}
$$

Definite integral is a number．

-

[^0]$=$


ハーコール
$\square$

$$
2+2
$$

'
促



$$
\longrightarrow
$$

## Free Fall

Objects near the surface of the earth experience a downward acceleration $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Describe the motion of a ball with initial height $y_{0}=1 \mathrm{~m}$, thrown vertically upwards with initial velocity $v_{y}(0)=1.5 \mathrm{~m} / \mathrm{s}$.
Solution: First calculate the velocity as a function fo time.
$v_{y}(t)=v_{y}(0)+\int_{0}^{t} a_{y}\left(t^{\prime}\right) \mathrm{d} t^{\prime}=v_{y}(0)+\int_{0}^{t} g \mathrm{~d} t^{\prime}=v_{y}(0)+g t$
Thus, we know: $v_{y}(t)=(1.5-9.8 t) \mathrm{m} / \mathrm{s}$.
Now calculate the height as a function of time:
$y(t)=y(0)+\int_{0}^{t} v_{y}\left(t^{\prime}\right) \mathrm{d} t^{\prime}=y(0)+\int_{0}^{t}\left(v_{y}(0)+g t^{\prime}\right) \mathrm{d} t^{\prime}$
$=y_{0}+v_{y}(0) t+\frac{1}{2} g t^{2} \quad$ Understand the 3 terms!
Insert the numbers: $y(t)=\left(1+1.5 t-4.9 t^{2}\right) \mathrm{m}$.
Now graph the velocity and height as a function of time and compare with the graphs from Fig. 2.29(b).
Why do they look different?

## Inclined Plane

(b)


On an incline we define $(x, y)$ coordinates parallel and perpendicular to the surface;
$\vec{a}_{\perp}$ is compensated by the surface; $\vec{a}_{\|}$determines the motion; air track $\approx$ frictionless surface; geometry and trigonometry $\rightarrow a_{\|}$(the magnitude!)

Why does the angle $\theta$ appear in the vector diagram? How do we get $a_{\|}$in terms of $a$ and $\theta$ ?

$$
\sin \theta=\frac{a_{\|}}{a} \quad \Longrightarrow \quad a_{\|}=a \sin \theta
$$

Makes sense?


[^0]:    

