
Lab 9: Capacitors and Inductors -

behavior of RC circuits and RL circuits

1 Introduction

An RC circuit contains a resistor and a capacitor.
Similarly, a circuit with a resistor and an inductor
is an RL circuit. When these circuits are connected
to a DC power supply (such as a battery), the current
through the circuits and the potential difference be-
tween the terminals of the circuit elements will vary
with time. During this experiment, you will study
the basic behavior of an RC circuit and an RL cir-
cuit. In particular, you will study how the voltage
across the plates of a capacitor (also known as a con-
denser) changes with time, first when the capacitor is
being charged, and then when it is being discharged.
You will measure the time constant associated with
this change in voltage, and use it to understand the
rules for how capacitors combine in series and paral-
lel circuits. Finally, you will study how the potential
difference across the terminals of an inductor changes
with time when an RL circuit is connected to or dis-
connected from a power supply.

EXERCISES 1-12 PERTAIN TO THE BACK-
GROUND CONCEPTS AND EXERCISES
13-18 PERTAIN TO THE EXPERIMENTAL
SECTIONS.

2 Background

Consider the circuit shown in figure 1 in which a power
supply, with a potential difference V between its ter-
minals, is connected across a resistor R. Assume that
the switch has been open for a long time.

Exercise 1a: What is the electric potential at points
A, B, C, D, E and F?

Exercise 1b: What is the potential across the resis-
tor (between points D and E)?

Exercise 1c: Immediately after the switch is closed,
what is the electric potential at points A, B, C, D, E

and F?

Exercise 1d: What is the electric potential difference
across the resistor?

Exercise 1e: A long time after the switch has been
closed, what is the electric potential at points A, B, C,
D, E and F? What is the electric potential difference
across the resistor?

Now check your answers with your TA before
proceeding further.

A parallel plate capacitor is easy to understand. It
is made up of two metal plates separated by a small
air gap. When the plates are connected to a battery,
opposite charges build up on the plates. The amount
of charge that can be stored is directly proportional
to the potential difference between the plates of the
capacitor. The capacitance C (farads) is the propor-
tionality constant relating the charge Q (coulombs)
stored on the plates, and voltage V0 (volts) between
the plates. This relationship is given by,

Q = CV0 (1)

After the capacitor is “charged up” (a long time af-
ter the switch is closed) no current flows through the
circuit. The voltage drop across R (recall V = IR) is
zero and the potential difference between the plates of
the capacitor is equal to the potential difference be-
tween the plates of the battery. The capacitor is now
fully charged.

Now consider the circuit shown in figure 2 in which the
battery (voltage V0 between terminals) is connected in
series with a resistor R and a capacitor C through a
switch. Assume that that there is initially no potential
difference between the plates of the capacitor. Assume
that the switch has been open for a long time.

Exercise 2a: What is the voltage across the plates
of the capacitor when the switch is open?

Exercise 2b: Same as 2a, but immediately after the
switch is closed?

Exercise 2c: Same as 2a, but a long time after the
switch is closed?

Exercise 2d: Based on your answers to parts 2a, 2b,
and 2c, sketch a graph for the voltage across the plates
of the capacitor as a function of time.
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Figure 1: A simple resistor circuit
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Figure 2: An RC circuit

Exercise 2e: Sketch a graph for the voltage across
the resistor as a function of time.

Have your TA check your graphs before you
proceed with the experiment.

Now consider the situation when the capacitor is fully
charged with the battery V0. Assume that the capac-
itor is disconnected from the battery and connected
across a resistor through a switch. At t = 0, the switch
is closed and the capacitor drives a current through
the resistor.

Exercise 3a: What is voltage across the capacitor:
i) When the switch is open? ii) Immediately after the
switch is closed? iii) A long time after the switch is
closed?

Exercise 3b: Based on your answers to exercise 3a,
sketch a graph of the voltage across the capacitor as
a function of time. Also, sketch a graph showing the
voltage across the resistor as a function of time.

Have your TA check your graphs before you
proceed.

We shall now discuss how the voltage across the plates
of the capacitor varies with time.

After the switch is closed (figure 2), Kirchoff’s voltage
rule can be applied to the circuit. Assume that the
instantaneous value of the current in the circuit is I(t).
Hence, we get,

V0 − I(t)R− VC(t) = 0 (2)

Now recall that VC(t) = Q(t)
C

and that I = dQ
dt

. Hence,
equation 2 becomes,

V0 = R
dQ

dt
+

Q(t)

C
(3)

Rearranging equation 3,

dQ

dt
= − 1

RC
(Q(t)− CV0) (4)

Differentiating the following substitution β(t) =

(Q(t) − CV0), we get dβ(t)
dt

= dQ(t)
dt

. Therefore the
solution to the differential equation becomes,

β(t) = β0e
−t
RC (5)

Assume that the initial condition for the charge on the
plates of the capacitor, is Q(t = 0) = 0. The solution
to equation 5 can be shown to be,

Q(t) = CV0(1− e−
t

RC ) (6)

Equation 6 describes the time-dependent charge
buildup on the plates of the capacitor. Using equa-
tion 1, we now write the time-dependent voltage
across the plates of the capacitor as,

V (t) = V0(1− e−
t

RC ) (7)

Exercise 4a: Verify that equation 7 makes sense by
applying limits t = 0 and t = ∞. How does the graph
of V (t) predicted by equation 7 compare with your
graph in question 2?

Exercise 4b: What are the values of V for t = RC,
2RC, 3RC and 5RC?

Exercise 4c: Verify that the quantity RC (which is
called the time constant for the circuit) has the units
of time.

Now again consider the situation when the capacitor
is fully charged with the battery V0. Assume that
the capacitor is disconnected from the battery and
connected across a resistor through a switch. At t = 0,
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the switch is closed and the capacitor drives a current
through the resistor.

Applying Kirchoff’s rule to this circuit we get,

Q(t)

C
− IR = 0 (8)

Knowing that the current is the rate at which charge
decreases on the plates of the capacitor, I = −dQ

dt
, we

get,
dQ

dt
= − Q

RC
(9)

The solution to equation 9 can be found by applying
the initial condition Q(t = 0) = Q0. The solution can
be shown to be,

Q(t) = Q0e
− t

RC (10)

Since Q0 = CV0, we can describe the potential differ-
ence across the plates of the capacitor by the following
equation,

V (t) = V0e
− t

RC (11)

Exercise 5a: Verify that equation 11 makes sense by
applying limits t = 0 and t = ∞. How does the graph
of V (t) predicted by equation 11 compare with your
graph in exercise 3?

Exercise 5b: What are the values of V for t = RC,
2RC, 3RC and 5RC?

Exercise 6a: Consider the RL circuit shown in fig-
ure 3. Assume that the switch is open, and that there
is no current flow through the circuit. Immediately
after the switch is connected to position A: i) What
is the current through the circuit? ii) What is the
potential difference across the inductor? iii) What is
the potential difference across the resistor?

Exercise 6b: A long time after the switch is con-
nected to A (figure 3): i) What is the current through
the circuit? ii) What is the potential difference across
the indutor? iii) What is the potential difference
across the resistor?

Exercise 6c: Give reasons for your answers. Sketch
a graph of the potential difference across the inductor
as a function of time.

A long time after the current in the circuit has sta-
bilized (with the switch in position A), the switch is
thrown to position B.

R

V
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L

Figure 3: An RL circuit

Exercise 7a: Consider again the circuit shown in
figure 3. Immediately after the switch is closed: i)
What is the current through the circuit? ii) What
is the potential difference across the inductor? Give
reasons for your answers.

Exercise 7b: A long time after the switch is in posi-
tion B (figure 3): i) What is the current through the
circuit? ii) What is the potential difference across the
inductor? Give reasons for your answers.

Consult the TA and verify that your predic-
tions are valid before proceeding further.

We shall now discuss how the voltage across the in-
ductor varies with time.

After the switch is connected to position A, Kirchoff’s
voltage rule can be applied to the circuit. Assume that
the instantaneous value of current in the circuit is I(t)
keeping in mind that L(dI

dt
) is the absolute value of the

induced emf in an inductor. Hence we get,

V0 − I(t)R− L(
dI

dt
) = 0 (12)

Exercise 8: Draw the circuit and show which termi-
nal of the inductor is at a higher potential.

Rearranging equation 12 we get,

dI

dt
= −R

L
(I(t)− V0

R
) (13)

Using the substitution,

β(t) = I(t)− V0

R
(14)

differentiating equation 14 and plugging it into equa-
tion 13 we get,

dβ

dt
= −R

L
β(t) (15)
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After solving the differential equation, the solution
can be found by applying the initial condition β(t =
0) = β0 and plugging back equation 14,

I(t) =
V0

R
(1− e−

t
τ ) (16)

where the time constant τ = L
R
.

Exercise 9: Draw I(t) versus t, showing the initial
(t = 0) and (t = ∞) current values.

Multiplying equation 16 by L and differentiating it we
get,

L
dI

dt
= V0e

− t
τ (17)

Which can be written as,

VL = V0e
− t

τ (18)

Equation 18 describes the potential difference across
the terminals of the inductor as a function of time
when the inductor is connected to a power supply.
In this case the inductor prevents the discontinuous
change of current, due to the induced emf.

Exercise 10: Draw a graph of VL versus t, showing
initial and final values.

Now consider the situation when the circuit is con-
nected to position B. Using Kirchoff’s rule and since
dI
dt

< 0 we get,

−L
dI

dt
− I(t)R = 0 (19)

Exercise 11: Draw the circuit and show which one
of the inductor’s terminals is at a higher potential,
immediately after the switch is connected to B.

Rearranging equation 19 we get,

L
dI

dt
= −I(t)R (20)

Using initial conditions, this results in,

I(t) =
V0

R
e−

t
τ (21)

Differentiating equation 21 and multiplying it by L we
get,

L
dI

dt
= −V0e

− t
τ (22)

where the time constant τ = L
R
.

In this case the inductor prevents the discontinuous
change of current, by reducing it gradually after the
power supply is abruptly disconnected.

Exercise 12a: Graph the potential drop across the
inductor as a function of time, marking the time con-
stant on your sketch.

Exercise 12b: Does your theoretical prediction agree
with your expectations (exercise 6 and exercise 7)?

3 Suggested Reading

Refer to the chapters on DC Circuits, Inductance and
AC Circuits,

R. Wolfson and J. Pasachoff, Physics with Mod-
ern Physics (3rd Edition, Addison-Wesley Longman,
Don Mills ON, 1999)

D. Halliday, R. Resnick and K. S. Krane, Physics
(Volume 2, 5th Edition, John Wiley, 2002)

4 Apparatus

Refer to Appendix E for photos of the appara-
tus

• 100 mH inductor

• 1 MΩ resistor trimpot

• Function generator

• 100 kΩ resistor

• 1 kΩ resistor

• 0.002 µF capacitors

• Oscilloscope

• Digital multimeter

• Banana cables

• Alligator clips

• Coaxial cables with BNC connectors on one end
and banana connectors on other end

• Plexiglass circuit board with binding posts
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5 Experiment I: Potential difference
between the terminals of a resistor

You can use a function generator and an oscilloscope
to test your answers. The terminals of the resistor can
be connected to an oscilloscope to understand how the
potential difference changes with time. Oscilloscopes
are preferred to voltmeters because voltages in typical
circuits often change on very short time scales (∼ 10−6

seconds). Therefore, the measuring instrument should
be sufficiently fast to measure, record, and analyze the
change in voltage. The function generator can output
a voltage that is a particularly simple function of time.
In the “square pulse mode” the output is either zero or
non-zero. The amplitude and frequency of the output
can be adjusted easily.

Now construct the circuit shown in figure 4 using
an oscilloscope connected across the resistor, and the
function generator serving as the power supply. As-
semble the circuit on the circuit board. Choose a re-
sistor and before connecting it to the circuit, check its
resistance with a digital ohmmeter. Use a tee connec-
tor and a BNC coaxial cable to connect the output of
the waveform generator directly to channel 1 of the
oscilloscope. The other arm of the tee connector can
be connected to the resistor using a suitable cable.

The central pin of the generator’s output connector is
connected to the central pin of the connector on the
oscilloscope via the inner connector of the coaxial ca-
ble. The outer connector (shield) of the cable provides
the return pathway to complete the circuit. It con-
nects the grounded outer connector on the generator
to the grounded outer connector on the oscilloscope.

Set the frequency of the generator to 100 Hz. Set the
trigger source on the scope to channel 1. Trigger the
scope by adjusting the trigger level knob until you
see the waveform. If you have trouble triggering the
scope, consult your TA. Measure the frequency of the
waveform using the oscilloscope and check how this
compares with the setting on the generator.

Now connect the terminals of the resistor to channel
2 of the oscilloscope and observe how the potential
difference across the terminals of the resistor changes
with time. Observe the waveform on a suitable time
base of the oscilloscope.

Exercise 13: Carefully, sketch the two waveforms

CH 1 CH 2 EXT

Function Generator

OutputTTLInput

R

Oscilloscope

Figure 4: Experimental setup for resistor circuit

R (Ω) C/L (F)/(H) τexpr. τcalc. τdiffr.

Table 1: Table template for experiments 2 & 4 with τ experi-
mental, calculated and difference.

that you see on the scope. Mark the period on the
sketch and explain your results. Are your expectations
for the answers to exercise 1 verified? Explain why or
why not.

6 Experiment II: Time constants for
RC circuits

Verify that you are using a resistor with R = 100 kΩ
using the digital multi-meter. The capacitor should
have a value C = 0.002 µF. Connect the series circuit
as shown in figure 5 on the circuit board. Set the gen-
erator to the “square pulse mode”. Connect channel
2 of the oscilloscope to the terminals of the capacitor.
Connect the output of the waveform generator (using
a tee connector) directly to channel 1 of the scope.

Ensure that the ground of the oscilloscope and the
ground of the function generator are connected to
THE GROUND TERMINAL OF THE CAPACI-
TOR. Trigger the oscilloscope, using channel 1 as the
trigger source. Adjust the frequency of the generator
so that the waveform has a period that is much longer
than the expected value of the time constant.

For experiments 2 and 4 use Table 6 to record your
results for the time constants and their uncertainties.

Exercise 14: Measure the time constant of the sig-
nal (displayed on channel 2) when the capacitor is
charged and discharged. Consult your TA and discuss
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CH 1 CH 2 EXT

Function Generator

OutputTTLInput

R

Oscilloscope

C

Figure 5: Experimental setup for an RC circuit

your measurement. Record your results in the form of
a table. Compare the time constants associated with
the charging and discharging of the capacitor. Com-
pare the measured time constants with the expected
values. Find out the uncertainties in the values of R
and C used in the experiment. Does the measured
value fall within this uncertainty?

Exercise 15a: Vary the resistance or the capacitance
and check if the time constant changes in the expected
manner. Tabulate your data.

Exercise 15b: Draw a sketch of the signal. Mark
the time constant on the figure. Does the shape of
the signal correspond to the theoretical predictions of
equation 7 and equation 11?

7 Experiment III: Combination of ca-
pacitors

When two capacitors C1 and C2 are combined in series
as in figure 7a, it is possible to show that the effective
capacitance Ceff is given by,

1

Ceff

=
1

C1

+
1

C2

(23)

When the capacitors are combined in parallel as in
figure 7b, the effective capacitance of the circuit is,

Ceff = C1 + C2 (24)

NOTE: Make sure that you use identical capacitors
for this experiment.

Exercise 16: Use one of the capacitors in the RC cir-
cuit shown in figure 5 and record the time constant.

CH 1 CH 2 EXT

Function Generator

OutputTTLInput

R

Oscilloscope

L

Figure 6: Experimental setup for an RL circuit

C

C

(a) (b)

Figure 7: Capacitors in series (a) and in parallel (b)

Replace the single capacitor by the capacitor combi-
nations shown in figure 7a and figure 7b respectively.
Record the time constant in each case. Tabulate your
results.

Exercise 17: Compare the measured time constants
to the corresponding expected values. Do your mea-
surements agree with the predictions of equation 23
and equation 24?

8 Experiment IV: Time constants for
RL circuits

Connect the circuit shown in figure 6.

Exercise 18: Test your predictions for the poten-
tial difference across the terminals of the inductor.
Use a 100 mH inductor and a suitable resistor (1 kΩ).
Sketch a graph of your observations. Measure the time
constant. Compare the experimental value of the time
constant with the calculated value.

Your lab report should include:

Answers to exercises 1-18 with relevant data tables,
graphs, figures and qualitative comments.

Refer to Appendix D for Maple worksheets.
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