
Lab 2: Fourier Analysis

1 Introduction

Refer to Appendix D for photos of the ap-
paratus Joseph Fourier (1768-1830) was one of the
French scientists during the time of Napoleon who
raised French science to extraordinary heights. Work-
ing on the solution to a one-dimensional heat-diffusion
equation, Fourier devised a method of expressing any
periodic or non-periodic function as the sum of a series
of sinusoidal terms. The principle of expressing an ar-
bitrary function as the sum of a set of sinusoidal terms
was revolutionary at the time and is called Fourier
theory or Fourier analysis. Its applications extend
far beyond the boundaries of heat-transmission the-
ory, to any field involving waves.

In this experiment, you will construct different peri-
odic waveforms by summing specific sinusoidal waves
with predetermined amplitudes and phases on a com-
puter. You will also investigate the concept of beats
using an oscilloscope, by summing two sinusoidal
waves (equal amplitudes) that have frequencies very
close to each other. Finally, you will perform Fourier
analysis of a sound wave generated by a metallic sound
bar.

EXERCISES 1-15 PERTAIN TO THE EX-
PERIMENTAL SECTIONS.

2 Background

Let us first consider Fourier analysis for periodic
functions. The Fourier theorem states that a periodic
function can be constructed by summing a series of
sinusoidal waves of different amplitudes, frequencies
and phases. This series can possibly involve an infi-
nite number of sine and/or cosine terms. One term
in the series appears at the fundamental frequency,
while the other terms oscillate at frequencies which
are harmonics (i.e. multiples) of the fundamental fre-
quency. A DC term at zero frequency is also included.
Therefore, we can mathematically express a periodic
function f(t) in Fourier component form as follows,

(a) (b)

Figure 1: (a) The wave with amplitude 1 oscillates at the fun-
damental frequency, and the other three waves are harmonics
of the fundamental frequency. The Fourier components plotted
are sin(t), 0.2sin(2t), -0.1sin(6t) and 0.1sin(4t). (b) The result
of summing the Fourier components in (a).

f(t) = Ao+A1 cos(wt)+...+B1 sin(wt)+B2 sin(2wt)+...
(1)

where Ao is the DC component of the periodic func-
tion, A1 cos(wt) + B1 sin(wt) is the fundamental com-
ponent of the function, An cos(nwt) + Bn sin(nwt)
is the nth harmonic component of the function and
An&Bn are known as the Fourier coefficients or ampli-
tudes. The fundamental angular frequency is w = 2π

T
where T is the period.

Using more compact notation, equation 1 can be
rewritten as,

f(t) = Ao +Σ∞
n=1An cos(nwt)+Σ∞

n=1Bn sin(nwt) (2)

f(t) = Σ∞
n=0An sin(nwt + ϕn) (3)

where ϕn is a phase angle. (Recall that sine and cosine
functions differ in phase by 90◦).

The construction of some periodic waveforms is illus-
trated in Figures 1 and 2. Figure 1a shows plots of
various sinusoidal terms with different amplitudes, fre-
quencies and phases. Summing these waveforms re-
sults in the waveform of Figure 1b.

As a second example, Figure 2b illustrates the con-
struction of a square wave from some sinusoidal com-
ponents plotted in Figure 2a.

The fundamental component in Figure 2a is sin(t).
This means that w=1 is the fundamental frequency,
the phase angle is zero and the amplitude of the fun-
damental component is 1. Some of the harmonics are
(1/3)sin(3t), (1/5)sin(5t) and (1/7)sin(7t). The am-
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(a) (b)

Figure 2: (a) The fundamental wave has amplitude 1, and the
rest are harmonics of the fundamental. (b) Summing the wave-
forms in (a) results in an approximate square wave.

plitudes (or Fourier coefficients) of the various compo-
nents can be derived mathematically, but the details
are not presented here (see suggested readings).

Figure 2b shows a plot of the function,

f(t) = sin(t) +
1

3
sin(3t) +

1

5
sin(5t) +

1

7
sin(7t) (4)

The waveform of figure 2b is only a crude approxima-
tion to a square wave. This is because we summed up
only few terms in the series. If we sum up more terms
of the series, a better approximation to the square
wave is obtained. If we sum an infinite number of
terms, we obtain the ideal square wave with perfectly
sharp edges.

Notice that in equation 4, cosine terms are absent and
only the odd harmonics of the fundamental frequency
are involved. To understand why this is the case, re-
call the concept of even and odd functions. An
even function (Figure 3a) is symmetric about the y-
axis. This is expressed mathematically as f(-x) = f(x).
On the other hand, an odd function (Figure 3b) is
symmetric about the origin O of the rectangular co-
ordinate system, and satisfies f(-x) = -f(x). A wave-
form is said to possess half-wave symmetry when-
ever the values in the first half of the period are just
the negatives of the values in the 2nd half of the period
or vice versa. The components required to construct
a waveform with half-wave symmetry must be odd.
Therefore, cosine terms are not necessary.

A square wave that is odd about the origin requires
only sine terms (see equation 4). In addition, only odd
harmonics of the fundamental frequency will appear
in the Fourier series because the square wave is also
even about t = π

2
, hence the Fourier components must

not vanish at t = π
2
, and the sine of odd frequencies

is appropriate, as illustrated in Figure 4.

In the first experiment, you will study the construc-

(a) (b)

Figure 3: (a) The cosine function is an example of an even func-
tion with respect to the origin, and (b) sine is an odd function.

tion of a square wave and some other periodic wave-
forms using a computer.

So far, we have defined waveforms in the time domain,
i.e. as a function of time f(t). Fourier methods can
also be developed in the frequency domain, i.e. F(w),
which is called the Fourier transform of f(t). The
Fourier transform gives the frequencies of the harmon-
ics and their respective coefficients or amplitudes.

A plot of the Fourier coefficients (or amplitudes) An

and/or Bn vs frequency is often very informative, since
it shows at a glance the frequency components, the
magnitude and the sign of the amplitudes. This type
of plot is often referred to as the frequency spec-
trum or frequency domain plot. A sample spec-
trum is shown in Figure 5.

Fourier analysis is not limited to periodic waveforms.
It can be extended to a waveform which does not re-
peat. In contrast to the construction of a periodic
waveform where discrete frequencies were required, we
need a continuous range of frequencies to construct a
single waveform. The frequency spectrum will be a
continuous function and the Fourier series of equa-
tion 1 is not useful in this case. Instead, the con-
tinuous Fourier transform is commonly used. Fourier
analysis of non-periodic waveforms is not studied in
this experiment. Refer to the suggested reading to
learn more on continuous Fourier transforms.

Beats: When two waves with the same amplitude and
having similar frequencies interfere, the amplitude of
the resulting waveform varies sinusoidally. These vari-
ations of amplitude are called ”beats”. To show this
mathematically, consider the superposition of the fol-
lowing two waves: s1 = a cos(w1t) & s2 = a cos(w2t)
where a is the amplitude of each wave and w1 and w2

are the angular frequencies (w = 2πf).

If we assume that w1 and w2 have similar values,
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Figure 4: (a) Even harmonics of the fundamental frequency
are not useful in constructing the square wave since the even
harmonics are not even w.r.t. π

2 . (b) odd harmonics of the
fundamental frequency are used since they are even about π

2 .

s = s1 + s2 = 2a cos(
w1 − w2

2
t) cos(

w1 + w2

2
t) (5)

Let w′ = w1−w2

2
be the difference angular frequency

and w = w1+w2

2
be the sum angular frequency. Then

equation 5 becomes,

s = 2a cos(w′t) cos(wt) (6)

Equation 6 is a cosine function with angular frequency
w. The term 2a cos(w′t) is the amplitude of the func-
tion. Notice the amplitude is oscillatory with the dif-
ference angular frequency w′.

The angular beat frequency is twice w′ (refer to sug-
gested reading), and is the difference between the in-
terfering angular frequencies,

wbeat = w1 − w2 (7)

and since w = 2πf , the beat frequency is,

fbeat = f1 − f2 (8)

The high frequency of the waveform is just given by,

f =
f1 + f2

2
(9)

Figure 6a shows two signals with close frequencies,
which when interfere result in beats as shown in Fig-
ure 6b.

An Bn

2 25

40 2 25 40

Figure 5: Frequency spectrum for an arbitrary function

(a) (b)

Figure 6: (a) plots of interfering waves (b) The angular beat
frequency is (5-4)=1 rad/s, while the high (angular) frequency
of the wave inside the envelope is (5+4)/2=4.5 rad/s.

3 Suggested Reading

D. Halliday, R. Resnick and J. Walker, Fundamen-
tals of Physics (4th Edition)

E. Hecht and A. Zajac, Optics (especially p.323)

4 Apparatus

• Fourier Analysis software

• PASCO Fourier Synthesizer

• Oscilloscope

• Speaker

• Banana/BNC connectors for synthesizer, oscillo-
scope and speaker

• Sound bar and hammer

• Computer interface and digital oscilloscope soft-
ware

5 Experiment I: Construction of peri-
odic waveforms using Fourier anal-
ysis software

In this experiment, you will observe how some peri-
odic waveforms are constructed. To construct a wave-
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form, we need to know the amplitude of each of the
components in the Fourier series of equation 1. It is
possible to determine the amplitudes mathematically.
However, you will be using computer software to find
out the amplitudes and the harmonic components re-
quired for constructing the following waveforms,

1. Square wave

2. Triangle wave

3. Saw Tooth wave

If the Fourier analysis software is not already setup,
open it by following these steps: win → main → file
manager → fourier → fourier3.exe

Select Square wave from the menu. Record the val-
ues for the harmonics and amplitudes for the first
19 harmonics. You can press pause (P) to freeze the
screen - it will make it easier to record the values.

Exercise 1: Sketch the waveform obtained by sum-
ming the first 19 harmonics. (For the square wave,
notice the overshoot associated with the abrupt rising
or falling edges).

Repeat for a,

• Triangle wave (choose triangle option from
menu)

• Saw tooth wave (choose saw tooth from menu)

Exercise 2: Sketch the waveform obtained by sum-
ming the first 19 harmonics for the triangle and the
saw tooth waves.

Exercise 3: Choose the following waveforms and only
sketch them when they become identifiable:

• Half wave rectified sine wave

• Full wave rectified sine wave

• Sinusoidal burst (The sinusoidal burst signal is
used in color TVs to keep track of the color on
the set; it is called a color burst signal)

Exercise 4: For the waveforms used in Exercise 3,
examine whether even only, odd only, or both even

and odd harmonics are required for constructing these
waveforms. (You don’t need to record any of the har-
monics or the amplitudes).

Exercise 5: Organize the 6 waveforms you studied
into the following categories: those that consist of odd
harmonics only, those that consist of even harmonics
only, and those that require both even and odd har-
monics. Explain why each waveform belongs to that
particular category.

Consider the square wave you constructed in exercise
1, and recall the overshoot at the rising and falling
edges of the wave. This overshoot is called the Gibbs
phenomenon. It is due to the fact that only a fi-
nite number of Fourier terms are being used in the
synthesis of the waveform. To resolve the Gibbs phe-
nomenon, computer algorithms are devised which cal-
culate variations of the Fourier coefficients. Using
these modified coefficients, the overshoot at the edges
of the square wave can be reduced.

Exercise 6a: Select the Hamming window, which is
an algorithm to compute the modified Fourier coeffi-
cients. You have to indicate the number of the highest
harmonic: choose 19. Record the harmonics and am-
plitudes for the Square wave only. Notice how the
amplitudes differ from those in exercise 1.

Exercise 6b: Sketch the square wave obtained after
summing 19 harmonics.

6 Experiment II: Synthesis of some
periodic waveforms using a synthe-
sizer

In experiment 2, you will use the amplitudes and the
harmonics recorded for some of the waveforms in ex-
periment 1, in order to synthesize those waveforms
using the PASCO Fourier Synthesizer, and view them
on the oscilloscope.

Description of the synthesizer: The front panel is ar-
ranged in 10 columns, each one controls the synthe-
sizer’s 10 channels. The two left columns labeled (1,1)
produce 440Hz signals. These signals represent the
fundamental frequencies. Each of the other columns
2, 3, 4, etc. represents the respective harmonic of
the fundamental. For example, the 7th harmonic cor-
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responds to column number 7, and has a frequency
of 7x440Hz=3080Hz. The slide switches below the
columns labeled (1) select one of the three waveforms:
sine, triangle, and square. The next two slide switches
are labeled 0 − 90◦ and 0 − 180◦ ; they control the
phase, and a variable knob that can be used to se-
lect any phase between 0−360◦. If both switches and
the variable knob are placed in the “0” position, then
all the signals are in phase. The next row of variable
knobs (below the phase knobs) is used to vary the am-
plitudes of the channel signal (clockwise increases the
signal). Each channel has a red banana jack which can
be used to monitor its waveform on the oscilloscope.
Each channel can be connected/disconnected by slid-
ing the in-out slide switch. Finally, the TRIGGER
OUTPUT can be connected to the external trigger
on an oscilloscope. When the TRIGGER OUTPUT
is connected to an oscilloscope, the synthesizer pro-
duces a square wave signal at the fundamental fre-
quency. This square wave is used to trigger (or start)
the oscilloscope waveform on the left side of the screen.
The 10K OUTPUT is used for the synthesized (or
summed) waveform and the 8Ω OUTPUT is used for
a speaker. Pressing the RESET button will reset the
digital circuitry; it is required, if for instance, occa-
sional transient signals shift the phases.

To get a feel for the instrument, connect the speaker
to the 8Ω OUTPUT on the synthesizer and slide all
the in-out switches to the out positions. Also, place
all the phase switches and the knob to “0”. Next,
place all the amplitude knobs to max, i.e. fully clock-
wise. Place the summing amplifier gain knob in the
“10 o’clock” position. Connect the oscilloscope to the
10K OUTPUT of the synthesizer. Trigger the oscillo-
scope externally by the TRIGGER OUTPUT of the
synthesizer. Slide the in-out switch of column (1) on
the left to the in position. Adjust the trigger level on
the oscilloscope and the position of the signal. Use AC
coupling on the oscilloscope, since we are interested in
the AC component of the signal.

Exercise 7a: From the trace on the scope, determine
the frequency (f = 1

T
where T is the period) and the

amplitude of the signal.

Exercise 7b: Place the first channel (1) back to the
out position and repeat exercise 7a for the rest of the
channels. Remember to switch in one channel at a
time.

Exercise 8: Are all the harmonics correctly cali-

brated? Test this by taking the ratio of each harmonic
to the fundamental frequency. The ratios should be:
1:2, 1:3, 1:4, etc.

Now using the data you recorded in experiment 1, syn-
thesize the square wave. Use the second column (1)
from the left on the synthesizer as your fundamen-
tal frequency. In order to use your amplitudes from
experiment 1, multiply each by a factor of 10. For ex-
ample, the amplitude 1 will now be represented by 10,
etc. Adjust the amplitude values for the fundamental
and the following harmonic and slide both switches to
the in position.

Exercise 9: Does the output begin to look like a
square wave?

Next, play with the phase. Switch the phase switch
on the 3rd harmonic to the 180◦ position.

Exercise 10: Does it now begin to take the shape of
a square wave? You can use the two channels of the
oscilloscope to view separately the fundamental and
the 3rd harmonic. Switch the 180◦ slide to 0◦ and
then back to 180◦ position. Describe what happens to
the signals when the phase is 0◦ and 180◦.

Reconnect channel 1 of the oscilloscope to the 10K
OUTPUT of the synthesizer. Continue adding the
remaining harmonics to form your square wave. Re-
member you may have to adjust the phase to get the
best square wave.

Exercise 11: Observe how the waveform changes as
harmonics are added. Sketch what the “final” wave-
form looks like with the limited number of harmonics
used.

Exercise 12: Synthesize the triangle and the saw
tooth waveforms using the data recorded in experi-
ment 1 and the method described above. Place all
the in-out switches to the out position and reset all
the phases to zero before starting to construct a new
waveform.

7 Experiment III: Beats

In this part of the experiment, you will investigate
beats, which are sinusoidal variations of the amplitude
of a wave constructed by adding two waves of equal
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Figure 7: Pulse waveform

amplitude and similar frequencies.

Connect the oscilloscope to the 10K OUTPUT on the
synthesizer. Trigger the oscilloscope as in experiment
2. Switch in the 4th harmonic and adjust the am-
plitude to a convenient value. Switch out the 4th
harmonic and switch in the 5th harmonic. Adjust
the amplitude until it equals the amplitude of the 4th
harmonic. Now switch in both the 4th and the 5th
harmonics.

Exercise 13a: Sketch the observed beat signal.

Exercise 13b: Determine the low (beat) frequency
of the “envelope” and the high frequency of the wave
within the envelope. To measure the frequencies ac-
curately, you may have to expand (for high frequency)
or compress (for low frequency) the time scale on the
oscilloscope.

Exercise 13c: Compare the values you obtained in
exercise 13b with the theoretical predictions of equa-
tions 8 and 9.

Exercise 13d: Measure the amplitude of the enve-
lope, and compare it with the prediction of equation 6.

Exercise 13e: Write the equation for the beat signal.

Exercise 13f: Discuss your results.

8 Experiment IV: Discrete Fourier
Transform of a square wave

In this experiment, we obtain a discrete Fourier trans-
form of a particular square wave by using the Fourier
analysis program. Choose M from the main menu
to construct the following waveform as shown in Fig-
ure 7.

To draw your plot on the grid on the computer screen,
use the following commands: PgUp → cursor right
(small right arrow on keyboard) → PgDn → ...

When you are done, press End→ D to get the discrete
Fourier transform, which is a graph of amplitudes vs.
the harmonics.

Exercise 14a: Draw a plot of the frequency spec-
trum. Record the amplitudes and harmonics which
synthesize this waveform.

Exercise 14b: Write down the equation which syn-
thesizes this waveform for the first few terms.

9 Experiment V: Fourier analysis of a
sound wave

In this experiment, you will use a sound bar as a
source and a computer interface to input a sound
wave into the computer and thus decompose it into
its Fourier components. The computer software for
this experiment functions as a digital oscilloscope; it
can obtain a Fourier transform for a signal.

To start the program, exit Windows and return to
DOS. At the C:¿ prompt type: CD SOUND ¡en-
ter¿. Then type SOUND ¡enter¿. Left-click the mouse
button on COM2 to accept the communication port.
Right-click (and continue to hold) the mouse button
in the graph area to produce a menu, go down to
DISPLAY and move the mouse to the right to get
the submenu. Select One Graph. With the help of
your partner, simultaneously strike the “metal flap”
with the soft hammer on the sound box and have your
partner press the START button on the screen. When
the signal is recorded, press the STOP button. You
may want to repeat the experiment until you get a
reasonably good signal.

To find the frequency components of the signal, double
click the left mouse button on the graph area. Change
the “Type of Graph” from Data to FFT (Fourier
Transform) by pressing the button with the Data.
Press Try It. If it is satisfactory, press OK.

Provide detailed sketches of the recorded signal and
the frequency spectrum.

Exercise 15a: What is the peak frequency and its
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error of the signal from the spectrum? How does it
compare to the value on the sound box?

Exercise 15b: Are there any other frequency com-
ponents in the spectrum? If yes, explain any possible
reason(s).

Your lab report should include:

Answers to exercises 1-15 with relevant data tables,
graphs, figures and qualitative comments.

Refer to Appendix C for Maple worksheets.
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