
Lab 7: Fabry-Perot Interferometer

1 Introduction

Refer to Appendix D for photos of the appara-
tus

A Fabry-Perot interferometer is a device that uses
multiple beam interference of light for high resolu-
tion spectroscopy. The Fabry-Perot interferometer is
useful because the conditions for which the device
produces constructive interference are very strict so
that its resolution can be very high. In fact, this in-
strument can have a much higher resolution than a
Michelson interferometer. It is typically used to re-
solve sources of light that have narrowly separated
wavelengths.

In this lab we will characterize the properties of the
interferometer. We will determine the free spectral
range and the finesse of the device. The free spec-
tral range tells us the range of observable wavelengths.
The finesse is a measure of the resolving power of the
instrument. To determine these properties, you will
need to record the interference pattern.

EXERCISES 1, 2 & 9 PERTAIN TO THE
BACKGROUND CONCEPTS AND EXER-
CISES 3-8 AND 10-13 PERTAIN TO THE EX-
PERIMENTAL SECTIONS.

2 Background

The Fabry-Perot interferometer consists of two par-
allel (highly) reflective surfaces separated by a small
gap. This is in fact the basic geometry of a resonant
laser cavity in which the active lasing medium fills the
space between reflectors.

The Fabry-Perot interferometer is able to produce
sharp interference peaks because it uses multiple beam
interference. This accounts for the higher resolution of
the interferometer. In comparison, a Michelson inter-
ferometer combines just two beams and observes the
interference pattern, hence is produces a lower reso-
lution. Consider a ray of light incident at an angle
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Figure 1: (a)Fabry-Perot setup (b) Fabry-Perot cavity.
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θ, as illustrated in figure 1(b). The path difference p,
between laser beams I and II can be obtained from
the figure,

p = A1A2 + A2B (1)

From the figure we find that,

A2B = A1A2 cos 2θ (2)

Plugging equation 2 into 1 we get,

p = A1A2(1 + cos 2θ)
p = A1A2(2 cos2 θ)

p = 2d cos θ (3)

where d = A1A2 cos θ. If the cavity has a medium
with index n, the path difference between consecu-
tively reflected beams is,

p = 2nd cos θ (4)

where d is the plate separation, n is the index of re-
fraction between the plates ( 1 for air) and θ is the
angle of incidence of the beam. The factor of 2 is due
to the two reflections between plates. Since all the
multiple reflections come out parallel to each other, a
lens can be used to combine the beams and observe
the interference pattern.

In order to understand the characteristics of the cav-
ity we will derive equations using the transmission and
reflection coefficients of the incident light beam. Con-
sider the following variables,

• t, t’ are the amplitude transmission coefficients at
each of the glass plates.

• r is the amplitude reflection coefficient of the glass
plates.

The transmission coefficient is the fraction of the in-
cident electric field that is transmitted and the reflec-
tion coefficient is the fraction that is reflected.

Now we can write the transmitted intensity of the
emerging light beams, as shown in figure 1(b). Notice
that the equations below correspond to the amplitudes
of the emerging beams. For example, N = 1 defines a
beam that travels right through the two glass plates
and N = 2 defines a beam that is transmitted after
being reflected once.

N = 1 E1 = E0tt
′eiωt

N = 2 E2 = E0trrt
′ei(ωt−δ)

N = 3 E3 = E0tr
4t′ei(ωt−2δ)

Therefore,
N EN = E0tt

′r2(N−1)ei(ωt−(N−1)δ)

Here, E0 is the amplitude of the incident electric field.
The exponential shows that the electric field is time
dependant and δ is the phase difference between ad-
jacently transmitted beams. The total electric field
is,

Etotal = a + aR′ + aR′2 + ... = a
1−R′

where a = E0tt
′eiωt and R′ = r2e−iδ.

Therefore the total transmitted electric field is,

Etotal
transmitted = E0tt′eiωt

1−r2e−iδ

The intensity of the transmitted electric field can be
obtained by multiplying the transmitted electric field
by its complex conjugate Itransmitted = EtotalE

∗
total.

The transmitted intensity becomes,

Itransmitted = I0(tt′)2
(1+r4)−2r2 cos δ

Here, I0 is the intensity of the incident electric field.
Using the identity cos δ = 1− sin2( δ

2
and tt′ + r2 = 1

the transmitted intensity becomes,

Itransmitted = I0
1+( 2r

1−r2 )2 sin2 δ
2

The equation tt′ + r2 = 1 is a statement of energy
conservation and it implies that there are no losses in
the interferometer. To simplify the above equation we
will define a new variable F , called the coefficient of
finesse. F depends on the coefficient of reflection of
the glass plates, r.

Itransmitted =
I0

1 + F sin2 δ
2

(5)

where F = 4R
(1−R)2

and R = r2.

As you can see from figure 1 the last beam travels
much further than the first. If the separation of the
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plates is changed by x the path of the last beam is
changed by (Nx)2n cos θ, where N is the number of
reflections between the plates. This means that the
interference pattern is very sensitive to small changes
in the plate separation. The sensitivity of the inter-
ferometer to changes in d means that the peaks in
the resulting interference pattern are very sharp. The
transmittance of the interferometer is defined as the
ratio of the transmitted light intensity to the incident
light intensity. It can be derived from equation 5. For
normal incidence (θ = 0), p = 2nd and the transmit-
tance is given by the equation,

T =
1

1 + F sin2 δ
2

(6)

where,

δ = 2π
p

λ
(7)

Constructive interference will occur when the phase
difference between adjacent beams is an integer mul-
tiplied by 2π. From equation 7 we see that this means
the path difference p must be an integral number of
wavelengths. This situation is similar to a cavity in
which standing waves occur when the length of the
cavity is an integral number of half wavelengths (see
figure 4). In this case, the round trip is an integral
number of wavelengths so that the wave will reinforce
itself. The transmitted waves will be in phase and
result in constructive interference.

A derivation of these equations will be covered in
PHYS2060 and can be found in ”Introduction to Op-
tics” by Pedrotti and Pedrotti, Prentice Hall 1993
(York Library: QC 355.2 P43 1993) chapter 11.

The transmittance of the interferometer is plotted as
a function of the phase difference δ in figure 2. Note
that δ is proportional to the path difference p. p is re-
lated to the mirror spacing d. Therefore, the spectrum
shown in figure 2 can be regarded as the intensity of
transmitted light as a function of plate spacing. Note
that the transmission spectrum consists of a series of
discrete peaks. The peaks correspond to the plate
spacing for which an integral number of half wave-
lengths fit within the Fabry-Perot cavity. Looking at
equation 6, it seems that the easiest way to measure
the finesse of the interferometer is to find the mini-
mum of the signal, half way between the peaks. This
can be achieved by adjusting the plate separation. At
this separation the sine term in equation 6 goes to 1
and the transmittance is just 1/(1+F). If you could
measure the minimum transmittance you could solve
T=1/(1+F) and determine the coefficient of finesse.

Figure 2: Transmittance as a function of phase, r = 0.95.

The problem with this method is that when the re-
flectance of the Fabry-Perot mirror is very high (for
example (∼ 99%), it can be seen from equations 5
and 6 that the coefficient of finesse is also very high
(∼ 10000). As a result, the transmittance goes to a
minimum (∼ 1/10000). The transmittance is there-
fore very small and difficult to measure.

Since the width of the transmitted peak is related to
the coefficient of finesse, a better method of finding
the coefficient of finesse involves measuring the width
of this peak. In order to make this measurement the
transmitted intensity is recorded as a function of the
plate separation.

Resolving Power: Many light sources produce a
discrete rather than a continuous spectrum of wave-
lengths. These discrete wavelengths will appear as
successive sets of peaks in the transmitted spectrum.
The resolving power of the device tells us the min-
imum difference between two wavelengths that can
be distinguished. We will use the Rayleigh criterion
to define this property. The criterion states that the
separation of the peaks corresponding to two closely
separated wavelengths λ1 and λ2 must be at least the
full width half maximum for the two peaks to be re-
solved (see figure 3). From figure 3 we can see that
this condition is satisfied when the (diffraction) mini-
mum associated with one spectral line corresponds to
the maximum of the second spectral line. If the coeffi-
cient of finesse is high (as in figure 2), the transmitted
intensity between peaks is nearly zero. It is therefore
a good approximation to assume that the half maxi-
mum occurs when T=0.5. If we let T=0.5 equation 6
can be rearranged so that,

sin
δ

2
=

1√
F

(8)

Since a transmission peak corresponds to δ = 0, the
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Figure 3: Rayleigh Criterion.

solution for δ from the above equation gives you the
phase change when going from the peak to the half
maximum. For high coefficient of finesse, the trans-
mission peaks are sharp. It is therefore easy to see
that the phase change from peak to half maximum
will be small. For small δ , we can use the approxima-
tion that δ = sin(δ) so that equation 8 simplifies to
δ = 2√

F
. This gives us the phase change from the peak

to the point of half maximum. Therefore the phase
change between two peaks is,

δmin =
4√
F

(9)

which is also called the FWHM (Full Width Half Max-
imum). This is a measure of the resolving power of
the instrument, which is clearly related to the co-
efficient of finesse. We can relate this phase differ-
ence to a change in wavelength. To do this, we can
combine equations 4 and 7 (for n = 1 and θ = 0)
to get δ = 4πd/λ. For small changes in this wave-
length we can differentiate the above expression to
get: ∆δ = 4πd(∆λ)/λ2. If we solve this expression
for ∆λ we get ∆λmin = δminλ

2/4πd. If we combine
this expression with equation 9 we can get an expres-
sion relating minimum resolvable wavelength and the
coefficient of finesse,

∆λmin =
λ2

π
√

Fd
(10)

Exercise 1a: From the equation λ = 4πd/δ and
equation 10 derive an expression for λ

∆λmin
.

Exercise 1b: Similarly, from the equation δ = 4πd/λ
and equation 9 derive an expression for δ

δmin
.

Exercise 1c: These expressions define a quantity
called the resolving power. Show that they are both

equal to π
√

Fd
λ

.

Finesse: Next, we will derive a quantity that is re-
lated to the resolving power called the Finesse. It
is defined as the ratio of the separation of adjacent
maxima over the FWHM. Therefore using equation 9
and considering 2π as the separation of adjacent peaks
(which can vary by changing d) we get,

f =
2π

4/
√

F
=

π
√

F

2
(11)

Exercise 2: Using equation 11 show that your answer
to exercise 1 can be written as,

λ
∆λmin

= δ
δmin

= fm

Free spectral range: Another useful property of a
Fabry-Perot interferometer is the free spectral range.
The free spectral range tells us the range of wave-
lengths that can be observed. From figure 2, you can
see that the interference pattern of the interferometer
is repeated as the path difference changes. The trans-
mission of the interferometer has a maximum when
the path difference between consecutive reflections is
an integer number of wavelengths

We can understand the properties of the interferome-
ter in terms of the standing waves in the cavity. For
these standing waves, a node must occur at the ends
of the cavity (see figure 4). There are two ways the
number of nodes in the standing waves in the cavity
can change. If the wavelength of light changes, a dif-
ferent number of nodes will be accommodated within
the cavity. If, however, the wavelength remains con-
stant the cavity length itself must change until one
more (or less) node is accommodated.

The first way to define free spectral range is to call
it the change in wavelength between maxima in the
transmittance. If the cavity length remains constant,
a free spectral range is the difference in wavelength
between adjacent modes that give you constructive
interference. In figure 4 these correspond to λ2 and
λ3. Since the cavity length is the same, it is true that,

mλ2 = (m + 1)λ3 (12)

The difference between these two wavelengths is the
free spectral range,

λfsr = λ2 − λ3 =
λ

m
(13)

Here we assume that λ2 and λ3 are nearly the same
and m is the index of a cavity mode or the number of
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Figure 4: Change of one free spectral range.

half-wavelengths that fit in the cavity. In other words,

m =
2d

λ
(14)

Using equations 13 and 14, we can find the free spec-
tral range in terms of measurable quantities to be,

λfsr =
λ2

2d
(15)

The free spectral range can also be defined in terms
of the change in frequency between maxima in the
transmittance,

νfsr =
c

λ3

− c

λ2

=
c(m + 1)

2d
− cm

2d
=

c

2d
(16)

Here, c is the speed of light. The second way to define
the free spectral range is to call it the change in the
cavity length between transmission maxima, keeping
the wavelength constant (making the cavity resonant
with the next higher or lower mode). This is shown
in figure 4 where the cavity changes and λ2 ranges
from mode m to (m + 1). The cavity length changes
by λ/2. Figure 4c corresponds to the resonant condi-
tions (maximum transmission) for wavelength λ3. A
different wavelength λ2 also satisfies the resonant con-
dition at the same cavity length as shown in figure 4b
(cavity length L1). When the cavity length increases
to L2, one more node of each wavelength can fit inside
the cavity (figures 4a and 4b).

3 Suggested Reading

Refer to the relevant chapters,

A.E. Siegman, Lasers Chapters 11 (University Sci-
ence Books, 1986). Pedrotti and Pedrotti, Introduc-
tion to Optics (Prentice Hall 1993).

4 Apparatus

• Photodiode

• Voltmeter

• BNC cable with adapter to banana

• Fabry-Perot interferometer

• He-Ne laser

• 2 mirrors

• Lens

• 3 stands for mirrors and lens

• Optical breadboard

• 3/16” Allen key

WARNING!!: KEEP TRACK OF YOUR
LASER BEAM AT ALL TIMES. NEVER
POINT THE BEAM AT PEOPLE, OR LOOK
IN THE APERTURE OF THE LASER OR BE
AT EYELEVEL WITH THE BEAM.

KEEP EYES AWAY FROM DIRECT OR
REFLECTED LASER BEAMS. OTHERWISE
SERIOUS EYE DAMAGE WILL OCCUR.

YOU SHOULD BE AWARE OF WHERE
THE LASER BEAMS STRIKE OPTICAL
COMPONENTS. REFLECTIONS FROM
OPTICAL COMPONENTS SHOULD BE
BLOCKED BY USING PIECES OF CARD-
BOARD THAT ARE PROVIDED. BE PAR-
TICULARLY CAREFUL WHEN YOU IN-
SERT OR REMOVE LENSES INTO A
LASER BEAM.

DO NOT TOUCH THE OPTICAL SUR-
FACES OF LENSES AND MIRRORS. IF
THE SURFACES ARE UNCLEAN, PLEASE
BRING IT TO THE ATTENTION OF THE
TA IMMEDIATELY.

USE THE TRANSPARENT LENS TISSUES
TO DETECT THE BEAMS.

7.5



He-Ne laser

mirror

mirror

glass plates

adjustment dials

screen

lever

micrometer

screw

crank
gear box

& motor

Figure 5: Fabry-Perot setup.

MAKE SURE ALL MOUNTS ARE SE-
CURELY FASTENED ON THE OPTICAL
TABLE.

5 Experiment I: Aligning the Fabry-
Perot Interferometer

The first step in the alignment is to have the laser in-
cident exactly perpendicular to the first glass plate of
the Fabry-Perot cavity. To ensure this is the case, ad-
just the mirrors so the reflected laser beam goes back
on itself into the laser. You should see the slightly ex-
panded beam reflected back on to the laser aperture.
Now that the beam is incident perpendicular to the
first glass plate, we must adjust the second glass plate
so that it is exactly parallel to the first. To accomplish
this adjust the gray dials on the second glass plate. If
the plates are not parallel you will see a row of dots
from each reflection between the plates. Move the di-
als and get a feel for how each dial adjusts the plate.
Once you are comfortable with the dials try getting
all the dots to overlap on a point. When you are close
you will start to see an interference pattern. If the
plates are not parallel, you will see lines that indicate
that the path difference changes as you go across the
beam. Adjust one of the dials until the direction of
the lines changes. This indicates that the plates are
parallel along the axis controlled by the dial. Now
adjust the other dial until the pattern of lines changes
direction again. After several iterations, you will see
a uniform spot without the line pattern. Take your
time to adjust the plates. If they are not aligned prop-
erly, your results will suffer. Perform the alignment as

Figure 6: Aligning the interferometer.

described above. Rotate the crank that controls the
length of the cavity and observe bright flashes in the
transmission on a screen.

6 Experiment II: Calibrating the in-
terferometer

Once you have aligned your interferometer you must
calibrate the crank. To do this start by turning it
and counting the number of flashes per full rotation
of the crank. Call this number “f1” (the units are
flashes/turn). When the crank is turned, it rotates a
micrometer screw. The screw then adjusts the end of
a lever that moves one of the glass plates. To calibrate
the device, turn the crank 10 full rotations and observe
how much this moves the screw. Call the movement
of the screw per turn of the crank “s”, (the units are
m/turn). The distance the glass plate moves is a frac-
tion of the distance that the screw moves because the
screw is attached to a lever (see figure 7).

To find this fraction measure the distance from the
fulcrum of the lever to the tip of the screw (call this
“b”). Now measure the distance from the fulcrum
to the rod attached to the glass plate (call this “a”)
(see figure 7). Clearly, the lever system will translate
the mirror by a fraction of the distance moved when
the screw is turned. This is due to the difference in
distances from the pivot or fulcrum. Since b >> a,
the lever moves the adjustable mirror by the fraction
(a/b)x, where x is the displacement of the screw.

Exercise 3a: Make the calibration described above
and use it to find how far the glass plate moves per
degree of rotation of the crank as measured by the
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protractor (call this conversion “c”, the units of c are
m/degree).
Exercise 3b: In this experiment, the angles θ1 and
θ2 are ∼ 90o (i.e. sin 90o = 1) which simplifies the
calibration. How would the calibration be dependent
on θ if the angle was less then 90o?

Exercise 4: From this conversion, and from your
value of f1, find the distance W that the glass plate
moves between each peak in the transmittance. To
determine when the flash occurs monitor the trans-
mitted light intensity on a photo-diode. The output
of the photo-diode can be recorded on a digital multi-
meter. You don’t need the actual value of intensity
just the intensity relative to the peak intensity. For
better accuracy, use a black sheet to block as much of
the room light as possible.

Recall that peaks occur when the phase difference, δ,
is an integer number of 2π. From equations 4 and 7 we
see that if n = 1 and θ = 0 the peaks will occur when
the distance between the mirrors is an integral number
of half-wavelengths. This means the measurement in
exercise 4 gives you a value for half the wavelength.

Exercise 5: Given that the wavelength of the light
is 6328 Ȧ how does your measurement compare with
the excepted value?

7 Experiment III: Finding the finesse

The finesse of the device tells us its resolution (see
equation 11). To find this we need to find not just
the spacing of the peaks, as we did in part 2, but also
the shape of the peak. To find this shape we will need
to measure the intensity of the light transmitted as
a function of the plate spacing using the photo-diode

and voltmeter. Position the photo diode so the trans-
mitted laser beam is incident on the photosensitive
region. Now rotate the crank so that you can see the
voltage change periodically as the crank is rotated.
Position the crank at the 0o position and record the
voltage on the voltmeter. Now rotate the crank by 5o

(you can rotate by less if you feel that you can do this
accurately) and record the voltage at this position.
Continue this at 5o intervals until you have passed 2
or 3 peaks. Now block the laser and determine
the background signal.

Exercise 6: Make the above measurements and plot
the voltmeter reading as a function of plate spacing.
Before you plot your results, subtract the background
signal from all your data points.

Exercise 7: From your plot, find the full width half
maximum, w, of the transmitted peak.

Exercise 8: Measure the distance between the plates
and using the accepted wavelength of the laser, calcu-
late the free spectral range using equation 15.

You can understand the behavior of the Fabry-Perot
cavity from different points of view. When the cavity
length is changed, a peak occurs every time the glass
plate is moved by half the wavelength, λ/2. You mea-
sured this to be W . This motion of the cavity changes
the phase between consecutive reflections by 2π, or
one free spectral range. This phase change could also
occur if the wavelength were changed by λfsr.

In exercise 7, we determined the distance that the
mirror moves to resolve one transmission peak (this
is the full width half maximum). Let us call this w.
w also corresponds to the phase change δmin given in
equation 9. This phase change could also occur if the
wavelength were changed by ∆λmin. These quantities
are related by the equation,

δmin

2π
=

∆λmin

λfsr

=
w

W
(17)

Exercise 9: Show that by combining equations 10,
15 and 17 it is true that,

w

W
=

2

π
√

F
(18)

Exercise 10: Use equation 17 and the values for w
and W from exercise 6 to find δmin and ∆λmin.

Exercise 11: Use equation 18 to calculate the coef-
ficient of finesse for your values of w and W .
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Exercise 12: What is the approximate coefficient of
reflection corresponding to this coefficient of finesse?

Exercise 13a: Using your experimental results for
d, λ and F and your answers for exercises 1 and 2
calculate the resolving power fm. Refer to exercises
1 and 2.
Exercise 13b: Using ∆λmin calculated in exercise
10, find ∆νmin.

Note: Once you have completed the experi-
ment, please remove all optical elements and
the detector from their mounts and place them
on the optical table.

Your lab report should include:

Answers to exercises 1-13 with relevant data tables,
graphs, figures and qualitative comments.

Refer to Appendix C for Maple worksheets.
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