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In the current literature, the focus of credit-risk analysis has been
either on the valuation of risky corporate bond and credit spread or
on the valuation of vulnerable options, but never both in the same
context. There are two main concerns with existing studies. First,
corporate bonds and credit spreads are generally analyzed in a context
where corporate debt is the only liability of the firm and a firm’s value
follows a continuous stochastic process. This setup implies a zero
short-term spread, which is strongly rejected by empirical observa-
tions. The failure of generating non-zero short-term credit spreads
may be attributed to the simplified assumption on corporate liabili-
ties. Because a corporation generally has more than one type of lia-
bility, modeling multiple liabilities may help to incorporate disconti-
nuity in a firm’s value and thereby lead to realistic credit term
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structures. Second, vulnerable options are generally valued under the
assumption that a firm can fully pay off the option if the firm’s value
is above the default barrier at the option’s maturity. Such an assump-
tion is not realistic because a corporation can find itself in a solvent
position at option’s maturity but with assets insufficient to pay off the
option. The main contribution of this study is to address these con-
cerns. The proposed framework extends the existing equity-bond cap-
ital structure to an equity-bond-derivative setting and encompasses
many existing models as special cases. The firm under study has two
types of liabilities: a corporate bond and a short position in a call
option. The risky corporate bond, credit spreads, and vulnerable op-
tions are analyzed and compared with their counterparts from pre-
vious models. Numerical results show that adding a derivative type of
liability can lead to positive short-term credit spreads and various
shapes of credit-spread term structures that were not possible in pre-
vious models. In addition, we found that vulnerable options need not
always be worth less than their default-free counterparts. © 2001
John Wiley & Sons, Inc. Jrl Fut Mark 21:301-327, 2001

INTRODUCTION

The focus of credit-risk analysis has been either on the valuation of risky
corporate bonds and credit spreads or on the valuation of vulnerable op-
tions, but never on both in the same context. Risky corporate bonds and
credit spreads have been modeled by Black and Scholes (1973) and Mer-
ton (1974) and extended by Black and Cox (1976), Longstaff and
Schwartz (1995), Briys and de Varenne (1997), and others. Studies of
vulnerable options were pioneered by Johnson and Stulz (1987) and sub-
sequently advanced by Hull and White (1995) and Jarrow and Turnbull
(1995). The existing studies can be improved in several aspects. First,
corporate bonds and credit spreads are generally analyzed in a context
where corporate debt is the only liability of the firm and a firm’s value
follows a continuous stochastic process. The obvious implication of this
setup is a zero short-term credit spread, which is strongly rejected by
empirical observations (see Fons, 1994; Jones, Mason, & Rosenfeld,
1984; Sarig & Warga, 1989). Because a corporation generally has more
than one type of liability and one maturing liability may cause a sharp
decrease in a firm’s value, modeling multiple liabilities may help to in-
corporate discontinuity in a firm’s value and thereby lead to non-zero
short-term credit spreads.

Second, vulnerable options are priced either under the assumption
that the option is the only liability of the firm (e.g., Johnson & Stulz,
1987) or under the assumption that the option is fully paid off if the
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firm’s value is above the default barrier at the option’s maturity (e.g., Hull
& White, 1995). Both assumptions are questionable. On the one hand,
most firms have debts in their capital structure, and contingent liabilities
(in the form of derivatives) are only part of the total liability. On the other
hand, it is not appropriate to evaluate an option’s vulnerability by focusing
only on technical solvency because a corporation can find itself in a sol-
vent position at the option’s maturity but with assets insufficient to pay
off the option. For example, suppose the value of the firm’s assets until
the option’s maturity has always been above the default barrier, which is
$40. Further suppose that the firm’s value is $50 at the option’s maturity.
If the option is $20 in-the-money, the firm is threshold-solvent but unable
to pay $20 in full to the option holder. The downfall of Barings Bank
serves as a convincing illustration: The default on debentures was purely
due to the large loss on derivative positions.

Third, risky corporate bonds (or corporate credit spreads) are usually
analyzed separately from other liabilities, especially short positions on
derivatives. However, many firms take derivative positions and at the same
time have outstanding corporate debts. It will be useful to examine how
risky corporate bonds affect the valuation of vulnerable derivatives, and
vice versa. As a matter of fact, some authors (e.g., Bodnar, Hayt, & Mar-
ston, 1998; Howton & Perfect, 1998; Levich, Hyat, & Ripston, 1998)
have demonstrated the increasing usage of derivatives by financial and
nonfinancial firms. In a wide survey of nonfinancial firms, Bodnar et al.
(1998) found that 50 of the responding firms reported the use of deriv-
atives. Of the derivative users, 42 indicated that usage had increased over
the previous year (Bodnar et al., 1998, p. 71). Moreover, the implemen-
tation of FAS133 requires that firms report their derivative positions at
fair value on their balance sheet, which effectively crystallizes the con-
tribution of any short positions on derivatives to a firm’s overall capital
structure. In addition, as pointed out by a reviewer, firms also take indirect
derivative positions. For example, an investment bank may hold an option
position in a takeover target; a financing firm frequently issues letters of
credit that represents contingent liabilities; a large conglomerate may act
as a third-party loan guarantor, which again results in contingent liabili-
ties; and so on.

The main objective of this study is to overcome the aforementioned
shortcomings in the existing literature. We propose a framework that in-
corporates two types of liabilities: a corporate bond that represents the
conventional debt of the firm and a short position in a call option that
represents contingent liabilities. The default barrier is stochastic with
respect to the interest rate and can be a function of either the initial
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option’s value or the market value of the option. Under each default-
barrier specification, we also examine two alternative settlement rules.
When the default barrier is determined by the market value of the option,
the option buyer essentially imposes a mark-to-market style of covenant.
The framework is quite general and encompasses many existing models
as special cases, including Merton (1974), Black and Cox (1976), John-
son and Stulz (1987), Longstaff and Schwartz (1995), and Briys and de
Varenne (1997). Numerical analyses demonstrate that including an ad-
ditional liability can generate positive short-term credit spreads. Under
reasonable parameter values, credit spreads can exhibit upward-shaped,
downward-shaped, and hump-shaped term structures. In contrast, within
the existing models a downward credit-spread term structure is possible
only when the firm is already bankrupt. It is shown that the bond maturity,
the moneyness of the option (or significance of the other type of liability),
the default-barrier requirement, the correlation between a firm’s value,
and the optioned stock price all play a role in determining the level and
shape of credit-spread curves. Moreover, we show that a vulnerable Eu-
ropean option may be worth more than its default-free counterpart if the
option holder is paid off according to a particular claim rule on default.

The article is organized as follows. The next section outlines the
model settings and discusses possible payoff rules under different sce-
narios for call holders, bond holders, and shareholders. The Numerical
Analysis section presents simulation results for vulnerable options, risky
bonds, and credit spreads under reasonable parameters and compares our
results with those generated by some of the existing models. The last
section concludes the article.

MODEL

Model Setup

Consider a firm that has as liabilities a zero-coupon bond with maturity
Ty, and face value F and a short position on a call option written on
another firm’s stock with strike price K and maturity T, (<T}).! We as-
sume a continuous-time economy where financial markets are complete
and frictionless so that we can apply Harrison and Kreps’ (1979) equiv-
alent martingale pricing principle to price the securities under
consideration.

'We use a call option as an example. The analysis can also be performed for other types of derivatives.
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The short-term riskless interest rate r, at time t is assumed to evolve
according to a Vasicek (1977) type of mean-reverting process under the
equivalent probability measure:

dr, = alb — r)dt + o,dz,, (1)

where a, b, and o, are constant and z;, is a standard Wiener process.
Without a loss of generality, we assume a zero market price of risk. Under
the short-rate process, the default-free zero-coupon bond P(t,T) maturing
at time T is governed by the following process:

dP(,T) 1 — e e
W = tht Gr f dZ]t (2)

The firm’s asset value under the equivalent probability measure is as-
sumed to follow

% = rdt + 0xdzy, (3)
A,

where G, is the standard deviation of the assets return and z,, is a Wiener
process. The correlation between the short-term risk-free rate and asset
value is pa,. The firm value is assumed to be independent of the capital
structure of the firm. Finally, the price of the optioned stock under the
equivalent probability measure is described by the following stochastic
process:

@ = rdt + odzs, (4)
S,

where o is the instantaneous volatility and z3, is a standard Wiener pro-
cess. The correlation between the short-term risk-free rate and the op-
tioned stock price is p,,, whereas that between the optioned stock price
and the firm value is pg,.

The default barrier or threshold level at time t,v(¢), is specified as

OL]FP(t,Tb) + azc Ot < TC
v(t) = OL]FP(t,Tb) 0 Tc =t < Tb
F fort = T

As soon as the firm value A, falls below v(t), the safety covenant would
trigger bankruptcy. Prior to the option’s maturity, this threshold repre-
sents the sum of the minimum requirements imposed by bond holders
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and option holders. After the option’s expiration, the threshold represents
bond holders’ minimum requirement. Depending on the specific features
of the covenant, C could be the initial value, C or the (varying) market
value C,, of an otherwise default-free option. In the former case, the
option holders impose a fixed amount of default protection, whereas in
the latter case, the protection amount varies according to the market
value of the option, which amounts to mark-to-market margin require-
ments. The parameters o; and a5 represent the degree of protection for
the two classes of liability holders and are assumed to be positive con-
stants. The maximum value of a; is 1.0, corresponding to full protection
to bond holders. However, o, can be bigger than 1.0, especially when the
initial value of the option, C, is used in the covenant specification. The
default barrier is stochastic, with the bond portion depending on the
evolution of the short-term risk-free interest rate and the option portion
depending on both the interest rate and the optioned stock’s price when
the covenant is based on C,,.

Next, we specify two distribution rules on default. The first approach
is the proportional distribution rule based on the default-barrier require-
ments, whereas the second is based on the market values of the corre-
sponding default-free instruments. Under the default-barrier distribution
rule, the payoff proportion to the option holder is based on the initial
value of the option, except when the default occurs at the option maturity,
in which case we use the option’s intrinsic value, max(S(t,) — K,0), to
calculate the proportions. To allow for potential violations of the strict
priority rule at default resolutions, we adjust the payoff proportions for
the bond holders and option holders respectively by fractional numbers,
v: and y,. When y; = 1 and vy, = 1, there is no leakage and the two
classes of creditors receive the full amount to which they are entitled. If
T, is the first passage time for the process A to go through the barrier
v, then T , = inf{t = 0,A; = v(t)} 0 0 <t = T}, and T, < T},. The payoffs
are summarized in Table I.

The payoffs under Scenarios 1, 3, and 4 are straightforward and easy
to understand. However, under Scenario 2, when A(T,) = v(T.) + [S(T,)
— K]*, although the asset value is above the threshold, on the exercise
of the call the remaining value of the asset is below the threshold required
by the bond holder. This is a case where the firm meets the covenant
requirements before the option’s maturity but is triggered into default by
the exercise of the option. Barings’ bankruptcy serves as the best example
to illustrate the point. Barings was financially strong and solvent before
the huge loss on derivatives trading was revealed. The unfortunate bank-
ruptcy was triggered by the large obligations that resulted from the Nikkei
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TABLE |

Payoff Descriptions for Different Scenarios

Scenario 1: Default Prior to Option’s Maturity: Ty, < T,

Default-Barrier Rule Market-Value Rule
Call Holder a,Cy, W p,A(T, )
Bondholder a,FR(T,,, Ty, (1 = W)y AT,
Shareholder 0 0

Scenario 2: No Default Prior to Option’s Maturity
A(T) >v(T,)

A(T,) =v(T,) + A(T,) > v(T,) +
A(Tc) = V(Tc) [S(Tc) - K]+ [S(Tc) - I<]Jr
(Default) (Default)
Default Market Default Market
Barrier Value Barrier Value
Rule Rule Rule Rule
Callholder W7, A(T,) Wy, A(T,) W, A(T,) Wap,A(T,) [S(T) — KI*
Bondholder (- w) - w) (1= w) (1= w)
7A(TY) 7A(T) 7A(TL) 7A(TL)
Shareholder 0 0 0 0
Scenario 3: Default Prior to Bond Maturity: T, < T, , <T,,
Bondholder AT )7
Shareholder 0

Scenario 4: No Default Prior to Bond Maturity
A(T,) <F A(T,) > F

Bondholder AT F
Shareholder 0 A(T,) — F

Note: maX[S(Tc) - K 0] = [S(Tc) - K*w, = mkr/{F’D(TA‘v! Tb) + ka!') W, = a2C/(a1FP(Tc! Tb) + a,C). W = [S(Tc) -
KI(FA(T,, T,) + [S(T.) — K]*). When the default barrier is based on the initial option value, C = C,; when the default barrier
is based on the market value of the option, C = C,,.

index futures. Our article represents the initial effort in addressing the
consequences of such a possible outcome on the credit spreads and vul-
nerable option values. We show in the numerical analysis that incorpo-
rating this possible outcome helps us to generate positive short-term
credit spreads and a downward sloping term structure of credit spreads,
which the existing models can generate only if the firm is already
insolvent.
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Discussion

We have specified the option’s maturity to be shorter than the bond’s,
which by and large reflects reality.” One could easily study a case where
the opposite applies. The only conceivable practical scenario correspond-
ing to this setup would be a case where a large amount of corporate debt
is maturing. In such a case, debt default is a less important issue given
the imminent maturity, but there could be implications for vulnerable
options. Such a case is straightforward to study but is omitted for brevity.

An acute reader may realize that we do not explicitly specify a re-
covery rate as many other authors have done. In our model, prior to the
option’s maturity, the recovery rate is stochastic and endogenous and de-
pendent on the interest rate and the severeness of the bankruptcy. This
is an important improvement over the existing literature, which mostly
employs a constant exogenous recovery rate. (As apparent in Table I, the
recovery rate beyond the option’s maturity will be ay; before the debt’s
maturity and between a;v; and 1.0 at the debt’s maturity.)

Several additional properties of our setup need to be pointed out.
First, when the covenant is based on the market value of the option, C,,,
the two distribution rules become identical if a; = 5. In the general
case where a; < a, it can be seen that the market-value-based distri-
bution rule would be favorable to bond holders and detrimental to option
holders in comparison with the barrier-based distribution rule. Second,
as long as a; # 1, the bond will always be risky, regardless of the level of
other parameters. This mimics reality well. Third, under the default-bar-
rier-based distribution rule and the market-value (of option) -based cov-
enant, the option would be completely default-free if y, = 1 and a, =
1. This is as if the option is marked to market continuously and margin
deposits are adjusted accordingly. With over-the-counter (OTC) deriva-
tives, this is highly unlikely, although counterparties have lately moved
toward fuller protection in the context of credit-risk management. Our
setup is capable of accommodating this reality. For example, under the
market-value-based distribution rule, even if Y, = 1 and a; = 1, the call
option is still vulnerable. This situation is equivalent to the following:
Daily revaluation of the option is indeed performed and the covenant
requirement is readjusted, but margin deposits are either not required or
not adjusted as frequently as the revaluation. This is a realistic scenario
in light of the widespread implementation of Value at Risk (which means

2Survey results from Bodnar et al. (1998) indicate that most firms use derivatives with short matur-
ities. For example, 77% of the foreign currency derivatives being used have an original maturity of
91 to 180 days.
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frequent reevaluation and reassessment of counterparty risk) and the
nonexistence of an established margin mechanism for OTC products.

Because of its general and realistic features, our model can be re-
duced to many previous models as special cases. For vulnerable options,
setting the default barrier to zero (by setting F = 0 and o, = 0) and the
priority parameter to one (Y, = 1) leads to the model by Johnson and
Stulz (1987). For risky debts, our model encompasses several existing
models. First, our setup reduces to the simple framework of Merton
(1974) by setting the option position to zero (S = 0) and removing the
bond covenant protection (by setting a; = 0).> Second, the model of
Black and Cox (1976) assumes a constant risk-free interest rate and no
violation of the strict priority rule, which can be achieved in our model
by setting the option position to zero (S = 0) anda = 0, 6, = 0, and v,
= 1. Third, Longstaff and Schwartz (1995), using the same stochastic
processes as in Equations 1 and 3, derived a closed-form formula for the
risky bond with a constant default barrier. In our framework, this is equiv-
alent to setting the option position to zero (S = 0) and the default barrier
to a constant, v(t) = K, (O t = Ty). Finally, Briys and de Varenne (1997)
extended the model by Longstaff and Schwartz by allowing the default
barrier to vary according to the market value of an otherwise risk-free
bond. In spirit, our model is close to Briys and de Varenne’s, although
they studied risky bonds only. We can obtain their model by setting S =
0. None of the aforementioned models can generate non-zero short-term
spreads and a downward sloping credit term structure for a solvent firm,
although such features have been observed empirically (Fons, 1994; Sarig
& Warga, 1989) (To generate a positive short term credit spread, Zhou
(1998) uses a mixed jump-diffusion process to model firm’s value while
maintaining debts as the sole liability of the firm).

Once we specify the stochastic processes and the payoff rules, the
value of the vulnerable option and the defaultable bond can be expressed
by way of risk-neutral discounting. Unfortunately, the valuation expres-
sions do not admit closed-form solutions because of the complex recov-
ery-rate specifications or the distribution rules. As a result, we must resort
to Monte Carlo simulations, which are delineated in the following
section.

3Throughout the discussions here, setting the option position to zero means S = 0, which is different
from a, = 0. In the latter case, although the option’s position does not affect the default barrier,
paying off the option at maturity will alter the asset value process and, therefore, the bond-default
dynamics.
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NUMERICAL ANALYSIS

The stochastic processes for the firm value, risk-free interest rate, and
stock price are discretized into daily intervals under the assumption of
250 days in a year. Correlated paths of the three variables and that of the
default barrier are then generated. At the beginning of each daily interval,
the firm value is compared against the default barrier. If default occurs,
the two classes of liability holders are paid off according to the prespeci-
fied distribution rule, and a new run is started, and so on. Each numerical
estimate is based on 10,000 runs. To reduce the simulation variance, we
employ both the antithetic method and the control variate technique.

To apply the antithetic method, for each regular path of the variable
in question, we generate a companion path that uses the same random
innovations as used by the regular path, but we reverse the signs. For
each run, the simulated value in question is simply the average of the two
simultaneously generated values.* To apply the control variate technique,
we need to choose a control variate for the risky bond and the vulnerable
option. For the risky bond, the control variate is the defaultable bond
studied by Briys and de Varenne (1997) that admits a closed-form for-
mula; for the vulnerable option, the control variate is the default-free
counterpart whose formula was derived by Merton (1973). The difference
between the theoretical value and the simulated value of the control var-
iate will then be used to adjust the simulated value of the instrument in
question. For details on the two variance reduction techniques, please
consult Hull (2000).

The parameter values for the simulation are chosen such that they
are consistent with empirical observations. Without a loss of generality,
we scale the current value of the firm to A, = 100. The instantaneous
volatility of the asset value or firm value is set at 4, = 0.2, consistent
with empirical findings of Jones et al. (1984) and the discussions in Le-
land and Toft (1996). For the interest-rate process, the mean-reversion
speed and the instantaneous volatility are set according to estimation
results of Chan, Karolyi, Longstaff, and Sanders (1992) and are consis-
tent with the values used by Briys and de Varenne (1997). Specifically, a
= 0.2 and 6, = 0.02. The spot interest rate and the long-run reversion
target are both set at 10% (ro = b = 10%) to produce roughly a flat term
structure of the risk-free rate, which will simplify interpretations of the
risky term structure. The instantaneous volatility of the stock return is og

*Unlike a typical simulation where the antithetic path always mirrors the regular path, in our setting
the two paths may terminate at different times because we are essentially simulating the first passage
time. Nonetheless, the mirroring effect or variance reduction is achieved at least for the time period
when both paths are in the solvent region.
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= 0.25, the level for a typical stock. In accordance with Footnote 3, the
option’s maturity T, and the bond maturity T}, are set at 0.5 and 5 years,
respectively, for the base case, and other values are examined in a com-
parative analysis. The current stock price S is set at 100 so that when
the option is at-the-money, it is about 10% of the firm’s asset value. Re-
alizing that equity and asset values tend to be negatively correlated with
interest rates, we set the three correlations at p,, = 0.3, p,, = —0.4,
and ps, = —0.25, consistent with Briys and de Varenne. The base case
values for the covenant protection parameters are a; = 0.85 and o, =
1.00, and the priority rule parameters are y; = 0.90 and y, = 1.00.
Finally, the face value of the bond is set such that the debt ratio is 50%
initially: F = 0.5A/P(0,T},).

To enhance our insight, we compare our results with those of the
existing models. For risky bonds and credit spreads, because our model
is a direct extension of Briys and de Varenne (1997), who in turn extended
the previous models, we include the credit spreads from their model for
comparison. The credit spread generated in our model will always be
larger than that in Briys and de Varenne because we introduce another
liability, the option. For vulnerable options, because our framework is a
direct extension of Johnson and Stulz (1987), we use their model for
comparison. In the framework of Johnson and Stulz, the vulnerable op-
tion only depends on the firm value dynamic and is assumed to be un-
affected by the capital structure of the firm. Therefore, our model extends
that of Johnson and Stulz in three ways. First, we allow default prior to
the option’s maturity; second, we allow bonds to compete with the option
for payoffs at the option’s maturity; and third, we allow a stochastic in-
terest rate. Because the last extension is a straightforward generalization
of the constant interest-rate assumption, we assume that it is already a
feature of Johnson and Stulz. In other words, when we refer to Johnson
and Stulz, we mean their model implemented with a stochastic interest
rate.

We examine various combinations of modeling parameters to fully
understand the behavior of vulnerable options and credit spreads. Sche-
matically, we first start with two main dimensions: whether the option
component of the default barrier (a,C) is based on the initial option value
C, or the market value C,,,. With each barrier specification, two distri-
bution rules at default are possible, either default-barrier-based or mar-
ket-value-based, as outlined in Table I. For each combination, we examine
how vulnerable options and credit spreads are affected by such variables
as bond maturity, capital structure, extent of covenant protection, and
various correlations. For similar results, we report only representative
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data for brevity. Considering that daily mark-to-market and margin re-
quirements are not yet an established practice for OTC derivatives, we
start first with the barrier specification based on the initial value of the
option. Later, in the section of Default Barrier Based on the Market Value
of the Option, we study the market-value-based default barrier and com-
pare the two.

Default Barrier Based on the Initial Option Value

Here the two distribution rules, the default-barrier rule and the market-
value rule, generate very similar results. For brevity, we only present the
results under the default-barrier rule.

Vulnerable Options and Term Structure of Credit
Spreads

We first study how the credit spreads vary across maturities and simul-
taneously examine the value of the vulnerable option. To this end, in
Exhibit 1 we vary the bond maturity from 1 to 10 years and accordingly
adjust the face value of the bond so that the debt ratio remains at 0.5.
Given our assumption of a firm'’s value invariance to the capital structure,
the sum of the defaultable bond value, the vulnerable option value, and
the equity value is always Ag = 100 if there is no leakage. Whenever
there is a leakage (i.e., y; # 1), we credit the amount of the bond payoff
leakage to equity value so that the conservation of value is obtained. This
is done mainly as a way of double-checking the numerical accuracy.
The effects of debt maturity are shown in Panels A and B, where the
option’s maturity is fixed at 0.5 years. We made several interesting obser-
vations. First, the default-free call and the vulnerable call based on John-
son and Stulz (1987) are both independent of the bond maturities, as
they should be. Second, in both panels the value of the default-free call
is higher than that of the vulnerable call based on Johnson and Stulz,
which in turn is higher than the vulnerable call’'s value generated from
our model. The option is the most vulnerable in our model because de-
fault can occur not only at option’s maturity but also at any time before
the option’s maturity. Although the results make intuitive sense, as we
see later, the vulnerable option in our model can be worth more than its
counterpart in Johnson and Stulz, or even its default-free counterpart.
Nonetheless, both panels show that the vulnerable option’s value is not
very sensitive to the bond maturity. Third, the credit spread from our
model is higher than its counterpart from Briys and de Varenne (1997),
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EXHIBIT 1

Vulnerable Options and Term Structure of Credit Spreads

Bond
Maturity Bond Call Equity Risk-free Credit Credit
(years) Value Value Value Yield Spread_CW Spread_BDV
Panel A: S, = 100, K = 100, C = 9.5323, C, = 9.5176
1 49.7759 9.5002 40.7300 9.99% 0.45% 0.00%
2 49.4872 9.4992 41.0200 9.98% 0.52% 0.08%
3 49.0633 9.4983 41.4400 9.96% 0.63% 0.21%
4 48.5807 9.4975 41.9300 9.94% 0.72% 0.33%
5 48.0878 9.4969 42.4200 9.92% 0.78% 0.42%
10 45.9594 9.4948 44.5500 9.81% 0.85% 0.63%
Panel B: S, = 120, K = 100, C,, = 25.6847, C, = 25.6441
1 48.0989 25.1400 26.7700 9.99% 3.88% 0.00%
2 47.4139 25.1327 27.4600 9.98% 2.66% 0.08%
3 46.7585 25.1264 28.1200 9.96% 2.23% 0.21%
4 46.1598 25.1211 28.7300 9.94% 2.00% 0.33%
5 45.6224 25.1165 29.2700 9.92% 1.83% 0.42%
10 43.6634 25.1024 31.2400 9.81% 1.36% 0.63%
Credit Spread: Option's Maturity is 1/4 of the Bond's Maturity
6.0%-
5.0%- ——BDV

-~ %80 =100
~4-80=110
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4.0%-
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2
ki . :
$2.0% :/‘/"/‘f A A <
—
1.0%1 g
snearoe o e &> o
. + * * )
el .
0.0% | o ¢ . | ; ; : ; : . Bond Maturity
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Credit Spread: Option's Maturity is 1/2 of the Bond's Maturity
9.0%1
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7.0%1 ——BDV
6.0%1 —#-50 = 100
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= 0.5, and a debt ratio of 0.5. Spread_CW is the spread generated from our model, Spread_BDV is the spread generated
from the model by Briys and de Varenne (1997), C, is the default-free call and C, is the vulnerable call based on Johson
and Stulz (1987).
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as expected. When the option is in-the-money, the credit spread is much
larger, which makes intuitive sense. In this case, the model by Briys and
de Varenne will significantly underestimate the credit spreads. The im-
portance of incorporating nondebt liabilities becomes obvious. Fourth,
the shape of the credit-spread term structure depends on the moneyness
of the option. It is upward sloping when the option is at-the-money and
downward sloping when the option is deep in-the-money.> As discussed
earlier, in previous models, including that of Briys and de Varenne, a
downward sloping term structure of credit spreads is possible only when
the firm is already insolvent. In our model, a short position on an option
can easily lead to the empirically observed result.

These finding begs a natural question: What if the option’s maturity
increases with the bond’s? To answer this question, we rerun the simu-
lations for two cases: to maintain the option’s maturity at one quarter of
the bond’s in one case and at one half of the bond’s in the other. As the
two figures in Exhibit 1 show, sizable short-term credit spreads are still
present when the option is in-the-money. For example, when the option’s
maturity is maintained at one quarter of the bond’s, the 1-year credit
spread is around 5 when the stock price is 130. In addition, the option’s
moneyness also determines the varieties of the term structure’s shape.
Downward sloping, upward sloping, and humped structures are all ob-
served. In contrast, the term structure generated from Briys and de Var-
enne (1997) is always upward sloping. Again, given the empirical obser-
vations of flat or downward sloping credit-spread term structures by Saig
and Warga (1989) and Fons (1994), our model has proved its versatility
and potential.

Effects of the Capital Structure

In our model, capital structure or debt ratio is defined as the ratio of the
market value of an otherwise risk-free bond over the current firm value:
F X P(0,T)/Aq. To study its impact, we repeat the calculations for Panel
A in Exhibit 1 for different debt ratios and report the results in Exhibit
2. The credit spread is very small when the debt ratio is 0.3. When the
debt ratio is 0.7, credit spreads are sizeable in both models. Here, our
model generates a downward sloping credit-spread term structure, which

>When we perform simulations for in-the-money cases, we set the initial barrier using the value of
an at-the-money option. This also holds for all subsequent simulations involving different moneyness
situations. Essentially, we are simulating situations where the barrier was set some time ago and the
option’s moneyness has since changed. In addition, we omit the results for out-of-the-money cases
because our model generates virtually the same results as those of Briys and de Varenne (1997)
because of the minimal effect of the option’s position.
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EXHIBIT 2

Effects of the Capital Structure

Bond

Maturity Bond Call Equity Risk-free Credit Credit
(years) Value Value Value Yield Spread_CW Spread_BDV
Panel A: Debt Ratio = 0.3, S, = K = 100, C,, = 9.56323, C, = 9.5176

1 29.9863 9.5266 60.4900 9.99% 0.05% 0.00%

2 29.9777 9.5264 60.5000 9.98% 0.04% 0.00%

3 29.9596 9.5262 60.5200 9.96% 0.04% 0.00%

4 29.9249 9.5260 60.5500 9.94% 0.06% 0.01%

5 208694 95259  60.6100 9.92% 0.09% 0.02%

10 203388 95255  61.1400 9.81% 0.22% 0.14%
Panel B: Debt Ratio = 0.7, S, = K = 100, C,, = 9.5323,C, = 9.5176

1 67.5925 9.4383 23.0600 9.99% 3.50% 0.75%

2 65.8745 9.4297 24.7900 9.98% 3.04% 1.36%

3 64.4841 9.4227 26.1900 9.96% 2.74% 1.56%

4 63.3781 9.4171 27.3100 9.94% 2.48% 1.60%

5 62.4759 9.4127 28.2100 9.92% 2.27% 1.58%

10 59.6752 9.4010 31.0400 9.81% 1.60% 1.30%
Panel C: Changing Debt Ratio With the Bond Maturity Fixed at 5 Years S, = K = 100, C,, = 9.56323, C;; =
9.5176

Debt Bond Call Equity Risk-Free Credit Credit
Ratio Value Value Value Yield Spread_CW Spread_BDV
0.1 9.9992 9.56317 80.4700 9.92% 0.00% 0.00%
0.2 19.9869 9.5300 70.4900 9.92% 0.01% 0.00%
0.3 29.8694 9.56259 60.6100 9.92% 0.09% 0.02%
0.4 39.3612 9.5167 51.1300 9.92% 0.32% 0.14%
0.5 48.0878 9.4969 42.4200 9.92% 0.78% 0.42%
0.6 55.8054 9.4567 34.7500 9.92% 1.45% 0.91%
0.7 62.4759 9.4127 28.2100 9.92% 2.27% 1.58%
0.8 68.1251 9.5047 22.4200 9.92% 3.21% 2.36%
0.9 73.0600 9.8121 17.1700 9.92% 4.17% 3.20%

Note: Unless otherwise specified, all results were computed with S, = 100, K = 100, A, = 100, r, = 10%,a = 0.2, b =
01,0, =002,0, =02, 05 =025, p, = =04, p,, = 03, p, = —0.25, a; = 0.85, @, = 1.00, y, = 0.90, 7, = 1.00, T,
= 0.5, and T, = 5. Spread CW is the spread generated from our model, Spread BDV is the spread generated from the
model by Briys and de Varenne (1997), C, is the default-free call and C, is the vulnerable call based on Johson and Stulz

(1987).

is in contrast to the upward sloping curve apparent in Panel A of Exhibit

1 with a debt ratio of 0.5. This implies that capital structure determines

not only the level but also the shape of the credit term structure. More-

over, with a debt ratio of 0.3, the credit term structure is U-shaped in our

model but upward sloping in Briys and de Varenne (1997); with a debt

ratio of 0.7, the term structure is humped in Briys and de Varenne. In
Panel C of Exhibit 2, we vary the debt ratio between 0.1 and 0.9. It is
seen that the value of the vulnerable option generally decreases and the
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credit spread increases, as expected. However, we notice a peculiar phe-
nomenon at a debt ratio of 0.9, whereby the vulnerable option’s value is
higher than its default-free counterpart and its vulnerable counterpart in
Johnson and Stulz (1987). The price inversion with respect to the vul-
nerable counterpart in Johnson and Stulz also exists when the debt ratio
is 0.1, 0.2, and 0.3. We later show in Exhibit 6 that it is entirely possible
for a vulnerable option in our model to be worth more than its default-
free counterpart.

Degree of Covenant Protection

Recall that the strictness of the covenant is captured by the two param-
eters, o; and a,. Because derivatives’ position (as a percentage of the
firm’s asset value) is usually smaller than debt’s, we still set a, = 1 and
only examine the effect of varying ;. Exhibit 3 reports the results. In
both models, the credit spread decreases as the degree of protection in-
creases. When full protection is in place, the credit spread is not zero in
either model because of the violation of the strict priority rule (i.e., v, =
0.9). In our model, even if a, = 1 and y; = 1.0, the bond is still risky
because default can be triggered by the option’s position, in which case
bond holders’ proportional claim to the asset value may be less than the
market value of the risk-free bond if the option is deep in-the-money.
Similar observations can be made for other moneyness situations, for
which we have plotted at the bottom of the exhibit the credit-spread term
structures. The credit spread is almost constant for most of the money-
ness situations when o is not very high. This is especially true in the
framework of Briys and de Varenne (1997). Intuitively, when the default
barrier is lower than a certain threshold, the possibility of default before
the option’s maturity is almost zero (and, hence, a; ceases to play a role),
and the spread is almost entirely due to defaults at the option’s maturity.
For Briys and de Varenne, the constant spread is almost entirely due to
the violation of the strict priority rule.

In the framework of Johnson and Stulz (1987), the vulnerable option
is not affected by the bond covenant protection. However, in our model
it is seen that the vulnerable option’s value goes down as the bond cov-
enant protection increases. This is a result of a subtle trade-off. When
the bond covenant protection increases, the overall default barrier is
raised, and as a result, both the bond holders and option holders enjoy
better protection against dramatic losses. However, because the option
holders’ covenant protection remains unchanged, an increase in o; means
a higher claim proportion for bond holders (and a lower proportion for
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EXHIBIT 3

Degree of Covenant Protection ()

Blood Call Equity Risk-Free Credit Credit
a; Value Value Value Yield Spread_CW Spread_BDV
S, = 100, K = 100, C, = 9.5323, C, = 9.5176
0.20 47.9515 9.56315 42.5200 9.92% 0.84% 0.43%
0.25 47.9519 9.5311 42.5200 9.92% 0.84% 0.43%
0.30 47.9525 9.5305 42.5200 9.92% 0.84% 0.43%
0.35 47.9531 9.5298 42.5200 9.92% 0.84% 0.43%
0.40 47.9540 9.5288 42.5200 9.92% 0.84% 0.43%
0.45 47.9550 9.5277 42.5200 9.92% 0.84% 0.43%
0.50 47.9564 9.5263 42.5200 9.92% 0.83% 0.43%
0.55 47.9583 9.5243 42.5200 9.92% 0.83% 0.43%
0.60 47.9612 9.5218 42.5200 9.92% 0.83% 0.43%
0.65 47.9659 9.5189 42.5200 9.92% 0.83% 0.43%
0.70 47.9746 9.5151 42.5200 9.92% 0.83% 0.43%
0.75 47.9916 9.5103 42.5000 9.92% 0.82% 0.43%
0.80 48.0250 9.5044 42.4800 9.92% 0.81% 0.43%
0.85 48.0878 9.4969 42.4200 9.92% 0.78% 0.42%
0.90 48.1988 9.4878 42.3200 9.92% 0.73% 0.41%
0.95 48.3846 9.4762 42.1500 9.92% 0.66% 0.37%
1.00 48.6705 9.4617 41.8800 9.92% 0.54% 0.31%

Effects of Changing o on Credit Spread

4.00% -—BDV
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~—4—S0=110
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§ ~¥—S0 =130
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0.00% ! . . . . ) . ! ! ) o
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Note: Unless otherwise specified, all results were computed with S, = 100, K = 100, A, = 100, r, = 10%,a = 0.2, b =
01,0, =0.02,0, = 02,05 = 025, p, = =04, p,, = 0.3, p,, = —0.25, &, = 1.00, y, = 0.90, 7, = 1.00, T, = 0.5, T, =
5, and a debt ratio of 0.5. Spread_CW is the spread generated from our model, Spread_BDV is the spread generated from
the model by Briys and de Varenne (1997), C, is the default-free call, and C is the vulnerable call based on Johson and
Stulz (1987).

option holders) at default. It is apparent from the exhibit that the latter
effect dominates the former. An immediate implication is that option
holders should not only ensure a higher overall default barrier but also
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ensure that their claim in case of default is commensurate with the de-
fault barrier.

Effects of the Correlation between the Firm Value
and the Optioned Stock Price (psa )

Both option holders and bond holders should be concerned about how
the firm value and the optioned stock price are correlated. For option
holders, a knowledge of the impact of the correlation on the option value
can help them structure the covenant initially; it is also true for bond
holders in that they have equal claim priority as the option holders. To
gain some insight, we repeat the previous simulations for two additional
values of p,s, 0.0 and —0.3, and plot the results in Exhibit 4, together
with the case for p;y = 0.3.

First, we notice the usual patterns whereby the credit term structure
generally slopes upward when the option is at-the-money or near-the-
money and downward when the option is deep in-the-money. Second, as
the correlation moves toward zero and becomes more negative, the credit
spread becomes bigger for a particular maturity. Although not reported,
the vulnerable option’s value goes down as the correlation becomes neg-
ative. The results make intuitive sense. When the firm value and stock
price are negatively correlated, a higher stock price is likely to be accom-
panied by a lower firm value, in which case both groups of liability holders
stand to lose more than otherwise in case of default. However, a positive
correlation will on average ensure that any gain on option values is sup-
ported by an increase in the firm value, which will make default less likely,
and as a result, both types of liability holders benefit. This implies that a
relatively lax covenant is warranted if the firm value is positively correlated
with the optioned stock price, and vice versa.

It is also apparent from the figures that the impact of the correlation
diminishes as the bond maturity increases. This makes intuitive sense
because the option’s maturity is fixed at 0.5 years. As the bond maturity
increases, the effect from the option’s position is being spread out. Notice
that the credit spread in Briys and de Varenne (1997) is independent of

Psa-

Effects of the Correlation between the Firm Value
and the Interest Rate (pa,)

Insofar as credit spread is jointly affected by the behavior of the firm value
and the interest rate, it would be useful to see how the comovement of
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EXHIBIT 4

Effects of the Correlation between the Firm Value and the Optioned
Stock Price (p,4)

Credit Spread with  pgs = 0.3
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Note: Unless otherwise specified, all results were computed with S, = 100, K = 100, A, = 100, r, = 10%,a = 0.2, b =
0.1,0, =002, 6, = 02,05 = 025, p, = —04,p, = — 025, a, = 085, a, = 1.00, vy, = 0.90,y, = 1.00, T, = 0.5, and
a debt ratio of 0.5. BDV is the credit spread based on the model of Briys and de Varenne (1997).
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the two variables affects the credit spreads and vulnerable options. To
this end, we repeat previous simulations for various levels of ps, and
report the result in Exhibit 5. The correlation p4, does not affect the shape
of the credit term structure in any significant way, although it does slightly
affect the level of credit spreads, as it affects the vulnerable option’s value.
Specifically, as the correlation moves from negative to positive, the vul-
nerable option’s value in our model decreases, whereas the credit spread
increases or, equivalently, the bond price decreases. Let us first examine
the bond. With a positive correlation, when the interest rate is high, the
firm value tends to be high, but the bond value is low. In this case, the
higher firm value does not benefit bond holders very much because their
claim is lower anyway. However, when the interest rate is low, the bond
value is high and the firm value tends to be low, and default is more likely.
If default does occur, bond holders stand to lose more because of the
lower firm value. Therefore, a positive correlation between firm value and
interest rate leads to situations where helps are bountiful when not re-
quired and scarce when needed.

As for the vulnerable options in our model, it is first to be recognized
that a higher interest rate leads to a higher call option value, other things
being equal. However, we have specified a negative correlation between
the stock price and the interest rate (i.e., p,, = —0.4), which means a
higher interest rate tends to be associated with a lower stock price and,
hence, a lower option value. If the second effect dominates the first, we
tend to see a lower option value associated with a higher interest rate.
Now, a positive correlation between the firm value and interest rate would
imply a higher firm value with a higher interest rate, and vice versa. Com-
bining these, we obtain an explanation for the pattern of the vulnerable
option’s value similar to that for the bond’s: Helps are not needed when
available and are absent when desired. This is why we see a downward
pattern in the option price when the correlation increases. Finally, within
the model of Johnson and Stulz (1987), the vulnerable option’s value goes
up slightly as the correlation increases, and this is because the first effect
dominates in this case because there is no interim default.

Closer Examination of Vulnerable Options

Up to this point, we have been studying vulnerable options and default-
able bonds when the option is either at-the-money or in-the-money and
the option’s maturity is relatively short. In those cases, the option com-
ponent of the default barrier is either close to or lower than the market
value of the option (most of the time). When default does occur, option



Vulnerable Options and Credit Spread

321

EXHIBIT 5

Effects of the Correlation between the Firm Value and the Interest Rate (py,)

Bond Call Call Equity  Risk-Free Credit Credit
PAr Value Value  Value, Cjq Value Yield Spread_CW  Spread_BDV
S, = 100, K = 100, C,, = 9.5323
-0.55 48.3635 9.4983 9.5175 42.1400 9.92% 0.67% 0.33%
—0.45 48.2713 9.4978 9.5176 42.2400 9.92% 0.70% 0.36%
-0.35 48.1793 9.4974 9.5176 42.3300 9.92% 0.74% 0.39%
—-0.25 48.0878 9.4969 9.5176 42.4200 9.92% 0.78% 0.42%
-0.15 47.9967 9.4964 9.5176 42.5100 9.92% 0.82% 0.46%
—-0.05 47.9063 9.4960 9.5176 42.6000 9.92% 0.86% 0.49%
0.05 47.8166 9.4955 9.5176 42.6900 9.92% 0.89% 0.52%
0.15 47.7277 9.4950 9.5176 42.7800 9.92% 0.93% 0.56%
0.25 47.6396 9.4946 9.5176 42.8700 9.92% 0.97% 0.59%
0.35 47.5551 9.4943 9.5176 42.9700 9.92% 1.00% 0.62%
0.45 47.4689 9.4938 9.5177 43.0500 9.92% 1.04% 0.66%
0.55 47.3836 9.4933 9.5177 43.1400 9.92% 1.07% 0.69%

Credit Spread with  p,,= 0.0
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Note: Unless otherwise specified, all results were computed with S, = 100, K = 100, A, = 100, r, = 10%,a = 0.2, b =
01,0,=0.02,06, =0.2,05 =025, p, = =04, p,, = 0.3, &, = 0.85, @, = 1.00, , = 0.90, y, = 1.00, T, = 0.5, T, = 5,
and a debt ratio of 0.5. Spread_CW is the spread generated from our model, Spread_BDV is the spread generated from
the model by Briys and de Varenne (1997), C, is the default-free call, and C is the vulnerable call based on Johson and
Stulz (1987).
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EXHIBIT 6

A Closer Examination of Vulnerable Options

Option’s Call  Default-

Maturity  Bond Call Value Free  Equity Risk-Free Credit Credit
(years) Value  Value Cj Call Value Yield  Spread_CW Spread BDV
Panel A: S, = 90, K = 100

0.50 48.6322 4.2216  4.2189  4.2272 47.1600 9.92% 0.55% 0.42%
1.00 48.0221 85912 85615 86084 434100  9.92% 0.81% 0.42%
1.50 47.1844 12.5047 12.4035 125706 40.3100 9.92% 1.16% 0.42%
2.00 46.0515 16.3657 15.8079 16.2384 37.4000  9.92% 1.65% 0.42%
2.50 45.0037 20.3369 18.8210 19.6751 34.5800  9.92% 2.11% 0.42%
3.00 44.0805 24.0737 21.4892 229171 32.1400  9.92% 2.52% 0.42%
3.50 43.1697 27.4735 23.8620 25.9878 29.4200  9.92% 2.94% 0.42%
4.00 42,4003 30.8444 259737 28.9038 27.0300  9.92% 3.30% 0.42%
4.50 41.6725 33.8648 27.8623 31.6775 24.4800  9.92% 3.64% 0.42%
5.00 41.0227 37.0710 29.5564 34.3191 21.9200  9.92% 3.96% 0.42%
Panel B: S, = 100, K = 100

0.50 48.0878 9.4969 9.5176  9.5323 42.4200 9.92% 0.78% 0.42%
1.00 47.1043 14.4461 14.7580 14.8497 38.3900 9.92% 1.19% 0.42%
1.50 46.0658 18.4858 19.0430 19.3946 35.4800 9.92% 1.64% 0.42%
2.00 448802 21.9583 22.6396 23.4925 32.9800 9.92% 2.16% 0.42%
2.50 43.8957 25.4712 25.6926 27.2698 30.5500 9.92% 2.60% 0.42%
3.00 43.1025 28.7068 28.3155 30.7919 28.5000 9.92% 2.97% 0.42%
3.50 42.3222 31.5660 30.5848 34.0983 26.1600 9.92% 3.33% 0.42%
4.00 41.6836 34.4460 32.5678 37.2159 24.1800 9.92% 3.64% 0.42%
4.50 41.0782 36.8955 34.3096 40.1640 22.0000 9.92% 3.93% 0.42%
5.00 40.5070 39.6592 35.8524 42.9576 19.8600 9.92% 4.21% 0.42%

Note: Unless otherwise specified, all results were computed with K = 100, A, = 100, r, = 10%,a = 0.2, b = 0.1, 0, =
0.02,0, = 0.2, 05 = 0.25, p,, = —0.4, p,, = 0.3, p,, = —0.25,5, = 0.85, a, = 1.00, y, = 0.90, y, = 1.00, T, = 0.5, and
a debt ratio of 0.5. Spread_CW is the spread generated from our model, Spread_BDV is the spread generated from the
model by Briys and de Varenne (1997), and C is the vulnerable call based on Johson and Stulz (1987).

holders tend to receive a settlement less than the market value of the
option (under the default-barrier distribution rule that we are using).
However, we sometimes observe in previous exhibits that the vulnerable
option is worth more than its default-free counterpart. As apparent in
Table I, option holders can potentially receive a settlement worth more
than the market value of the option. This occurs when a default is trig-
gered, yet the market value of the option is much lower than the initial
value, C,. A plausible corresponding scenario would be one where the
option is struck at-the-money and the default barrier is set accordingly,
but the option becomes out-of-the-money subsequently. To confirm this,
we calculate option values and credit spreads for an out-of-the-money
option with different maturities and report them in Exhibit 6. For com-
parison, we also calculate the same for an at-the-money option. (When
we vary the option’s maturity from 0.5 to 5 years, the bond’s maturity is



Vulnerable Options and Credit Spread 323

kept at 5 years.) When the option is out-of-the-money, it is worth more
than its counterpart in Johnson and Stulz (1987) for all maturities and
more than the default-free counterpart when the maturity is beyond 2.0
years. When the option is at-the-money, it is worth less than its default-
free counterpart for all maturities but still more than its counterpart in
Johnson and Stulz when the maturity is beyond 3 years.®

Bond holders do not enjoy this luck in the setup because their con-
tribution to the barrier specification is fully market-value-based. That is
why we did not observe a single negative credit spread. Unless covenants
are fully market-value-based for OTC derivatives and margins are posted
accordingly, which is unlikely to happen in practice, vulnerable options
can always be potentially less vulnerable.

Finally, the credit spread becomes bigger as the option’s maturity
becomes longer. This reflects the bigger liability other than the debt in-
curred by the firm. This is in contrast with the constant spread of 0.42
produced by the model of Briys and de Varenne (1997).

Default Barrier Based on the Market Value of the
Option

So far, the analyses are based on default barriers that depend on the initial
value of the option. If the barrier is allowed to depend on the market
value of the option, there will be altogether four possible combinations
to consider, two default-barrier specifications and two distribution rules.

Some general discussion is in order. First, the bond is risky under all
combinations except one, when the default barrier is based on the initial
value of the option and the distribution rule is market-value-based. In
this case, it is possible that a default is triggered when the option is deep
out-of-the-money, and the settlement payoff to the bond holders is higher
than the market value of the risk-free counterpart. This scenario, of
course, does not make much sense. To avoid this, we arbitrarily stipulate
that when the default barrier is breached, the firm is dissolved only if the
firm value is lower than the default barrier based on the market value of
the option at that point. Second, as far as option holders are concerned,
it can be determined from Table I that, when a, = 1, the default-barrier
distribution rule is always preferred to the market-value distribution rule,
no matter how the default barrier is specified. However, with the same

The intuitive reason option maturity plays a role can be explained as follows. The default-free op-
tion’s value is higher the longer the option maturity is. A higher initial (at-the-money) option value
means a higher claim proportion in case of default. The higher the claim proportion is, the bigger
the unfair claim portion is when the option is out-of-the-money at default and, hence, the pattern.
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distribution rule, it is not entirely clear which default-barrier specification
is preferable. Third, the opposite is true for bond holders. In other words,
the bond will have a bigger credit spread under the default-barrier distri-
bution rule. Again, under the same distribution rule, it cannot be deter-
mined ex ante which default-barrier specification is preferred.

The simulation results, which are omitted for brevity, confirm these
general predictions. In addition, we find that the option is the least vul-
nerable when both the default barrier and the distribution rule are based
on the market value of the option. It is the most vulnerable when the
barrier is based on the initial option value, yet the distribution rule is
based on the market value. Intuitively, this is because the option portion
of the default barrier is static and provides only partial protection, and
yet the distribution implies that the option holder will never receive more
than the market value of the option on default.

As for credit spreads, although the general predictions are confirmed,
when the option is at-the-money, or when the debt ratio is not very high,
the differences in spreads among the alternative covenant and payoff
specifications are generally not discernible. The difference in spreads be-
comes large only when, for example, the liability from the option’s posi-
tion is large (with in-the-money options).

Overall, the simulation results show that under general conditions,
the two default-barrier specifications do not lead to very different valua-
tions for vulnerable options and defaultable bonds. For vulnerable op-
tions, the best specification is one where both the default barrier and the
distribution rule are based on the market value of the option. For de-
faultable bonds, the lowest spread is associated with a default barrier
based on the market value of the option but a market-value-based distri-
bution rule. Among the four barrier—distribution combinations, some are
more plausible than others. The insights from our analysis help to deter-
mine how a covenant should be set up properly.

CONCLUSION

Most of the existing studies on credit-risk treat valuations of defaultable
bonds and vulnerable options separately. There are two main drawbacks.
First, the possibility of one type of liability going into default triggered by
the other is totally ruled out, yet examples of such occurrences in practice
are plentiful. Barings Bank is a case in point. Second, it is far too un-
realistic to assume, for example, that bond holders have total claim
against the firm in case of default. As derivatives become ever more prev-
alent in corporate treasuries, bond holders have found more and more
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companies as liability holders of the firm. The existing literature on vul-
nerable options has a drawback of its own. Most studies on this topic
define default by comparing the asset value of the option-issuing firm
with an exogenously specified default barrier, which usually takes the
form of corporate debt. Option holders are fully paid off as long as the
firm value is above the debt level. This flies in the face of both common
sense and reality. Given that most derivative securities have theoretically
infinite payoffs (e.g., a call), merely requiring the firm to be technically
solvent with respect to regular debt does not guarantee full payoff to
option holders. The end result of this erroneous assumption is the over-
estimation of the vulnerable option’s value.

This article overcomes the aforementioned drawbacks by combining
the two strands of literature. We introduce a second group of liability
holders in the form of call option holders who are assumed to have equal
claim priority as bond holders. The call option’s maturity is assumed to
be shorter than the bond’s. In this framework, the default boundary is a
sum of the minimum requirements imposed by bond holders and deriv-
ative holders. If default occurs before the option’s maturity, the two
groups of liability holders will claim against the firm’s assets according to
a distribution rule either based on prespecified requirements or based on
the market value of the two instruments. In our model, both the default
barrier and the firm value experience jump downward at the option’s ma-
turity. The former drops by the amount of the option holder’s covenant
requirement, whereas the latter drops by the amount of the intrinsic value
of the option, which could be zero. Our framework contains many existing
models as special cases, including Merton (1974), Black and Cox (1976),
Johnson and Stulz (1987), Longstaff and Schwartz (1995), and Briys and
de Varenne (1997).

To assess the full impact of the additional liability in the form of a
short call, we examined two alternative default-barrier specifications, one
based on the option value at initiation and the other based on the market
value of an otherwise default-free option. The debt portion of the default
barrier is always stochastic because of a stochastic interest rate. Under
each default-barrier specification, we in turn examined two alternative
settlement rules, one where the payoff proportions were based on the
barrier specification and the other where the proportions were simply
based on market value of the bond and the option.

Extensive simulations show that our model is capable of generating
a variety of credit-spread term structure shapes, including upward slop-
ing, downward sloping, and humped. Importantly, it can generate sizable
short-term credit spreads that are impossible within the conventional dif-
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fusion setting. Moreover, unless the debt ratio is very high, or the option’s
position is large, the two different barrier specifications do not seem to
produce very different valuations for the vulnerable option and the de-
faultable debt. With our parameters, it appears that the option is the least
vulnerable when the default barrier is based on the market value of the
option and the claim proportions (on default) are based on the barrier
specifications (as opposed to simply the market value of the two instru-
ments); the debt is the least risky under the default barrier but with a
claim rule whereby the proportions are strictly based on the market values
of the two liabilities.

For vulnerable options, we have an interesting and unique finding.
Under a particular covenant and payoff specification (i.e., when both the
default barrier and the claim rule are based on the initial value of the
option), a vulnerable option can be worth more than its default-free coun-
terpart or its counterpart that is not subject to early default: A vulnerable
option need not be always vulnerable after all. This seemingly counter-
intuitive result is due to the way we specify the default barrier and the
claim rule. The default barrier is specified at the time the two types of
liabilities are initiated and vary subsequently only because of interest-rate
fluctuations. Although this setup suits the bond holder well, it does not
take into account the market value change of the option due to fluctua-
tions in the optioned stock price. As a result, sometimes the option holder
can receive more than the fair value of the option at default. Unless the
default barrier and the claim proportion are both market-value-based, this
possibility always exists. This has profound implications in terms of the
fair valuation of defaultable options.
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