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VALUATION OF HOUSING INDEX

DERIVATIVES

MELANIE CAO*
JASON WEI

This study analyzes the valuation of housing index derivatives traded on the
Chicago Mercantile Exchange (CME). Specifically, to circumvent the nontrad-
ability of housing indices, we propose and implement an equilibrium valuation
framework. Assuming a mean-reverting aggregate dividend process and a utility
function characterized by constant relative risk aversion, we show that the value
of a housing index derivative depends only on parameters characterizing 
the underlying housing index, the endogenized interest rate and their correlation.
We also analytically and numerically examine risk premiums for the CME futures
and options and obtain three important findings. First, risk premiums are signifi-
cant for all contracts with maturities longer than one year. Second, the expected
growth rate of the underlying index is the key determinant for risk premiums.
Third, risk premiums can be positive or negative, depending on whether the
expected growth rate of the underlying index is higher or lower than the risk-free
yield-to-maturity. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:660–688, 2010
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INTRODUCTION

On May 26, 2006, the CME, in collaboration with MarcroMarkets LLC, intro-
duced the first exchange-traded futures and options on housing market indices.
The purpose was to offer hedging vehicles for the real estate markets. The con-
tracts are written on 11 SP/CS (Standard and Poor’s/Case Shiller) housing
indices representing residential real estate markets in Boston, Chicago,
Denver, Las Vegas, Los Angeles, Miami, New York, San Diego, San Francisco,
Washington DC, and the entire USA. Despite exceptional volatility in residen-
tial real estate prices, the trading volume of CME housing derivatives has been
low. According to the CME report, the total trading volumes for 2007 and 2008
were only 4,364 and 1,178, respectively.1

This slow development is similar to that of the CME weather derivatives
market shortly after its inception in 1997. The underlying variables for the
CME weather contracts are nontradable, temperature indices. The nontrad-
ability of the underlying posed valuation challenges. Not surprisingly, in the
early years, reliable valuation models were slow in coming and potential market
participants stayed on the sidelines for not knowing exactly how the weather
derivatives should be valued. The market saw only sporadic trades and the total
trading volume was in the range of 2,000–5,000 contracts per year.
Subsequently, various valuation models were developed and became available
in the public domain. Meantime, there was an increased awareness of weather
derivatives in the investment community, especially among hedge funds. As a
result, more participants were drawn to the market and the trading volume
increased in multifold. For instance, the trading volume of weather derivatives
(in number of contracts) on the CME for 2007 and 2008 were 927,461 and
776,397, respectively, a dramatic increase from the few thousand contracts in
the early years. Though still thin in absolute terms, the weather derivatives
market did see some impressive growth in the past few years. We attribute the
growth, if not entirely, to the advancement of valuation techniques.

The experience with the weather derivatives market suggests that the inac-
tive trading in the housing derivatives market might be due to the lack of valu-
ation models. Here, the valuation challenge lies in the fact that the residential
housing market is illiquid and the underlying housing indices are not tradable.
The nontradability of housing indices renders the usual risk-neutral valuation
technique powerless. Nevertheless, technical challenges do not mean that the
market would not catch up, as already demonstrated by the weather derivatives
market. In fact, the sheer size of the real estate market offers great potentials:
As of 2008, the real estate market in the US was valued at $20.511 trillion,
1In fact, there was an across-the-board decrease in trading volume for almost all CME-traded derivatives.
The grand total of contracts traded in 2008 was 111,469,604, in contrast to 119,748,558 in 2007. The over-
all decline in trading activities might be a result of the recent financial downturn.



662 Cao and Wei

Journal of Futures Markets DOI: 10.1002/fut

compared with $27.35 trillion for the equity market and $33.49 trillion for the
fixed-income market.2 Even hedging demand alone should lead to a sizable
housing derivatives market. It is hoped that a better understanding of the valu-
ation principles will stimulate and facilitate more active participation in this
emerging market.

This study is aimed at fulfilling the above hope. The objective is twofold.
The first is to propose a valuation model that can accommodate the nontrad-
able nature of housing indices. Specifically, we extend Lucas’ equilibrium
model (Lucas, 1978) by introducing a housing market in addition to the financial
and goods markets. We specialize the model by assuming a constant-relative-risk-
aversion preference, a mean-reverting aggregate dividend process, and a geo-
metric Brownian motion for the housing index. In this framework, the instan-
taneous risk-free interest rate is endogenous and follows a Vasicek-type
mean-reverting process with parameters expressed in terms of the risk-aversion
parameter and parameters governing the aggregate dividend process. With the
joint processes of the housing index and the risk-free interest rate, we obtain
closed-form valuation formulas for housing index derivatives.

The other objective of this study is to study risk premiums arising from the
nontradability of housing indices. To this end, we define the risk premium of a
housing index derivative as the percentage difference between the equilibrium
value and the risk-neutral value of the derivative. The analysis then proceeds in
two steps: analytical and numerical. The general, analytical, comparative stat-
ics reveal the following insights: (1) the risk premium for a futures contract
increases with the maturity, the expected housing index return, its return
volatility and the correlation between the housing index and the interest rate,
and decreases with the long-run mean of the interest rate; (2) the risk premium
for a call increases with the expected housing index return, its return volatility
and the correlation between the housing index and the interest rate; (3) the risk
premium for a put decreases with the expected housing index return, its return
volatility and the correlation between the housing index and the interest rate;
and (4) the effects of other model parameters are indeterminate for call and
put options.

The numerical analysis is tailored to the CME housing index derivatives.
To facilitate the exercise, we first empirically estimate the parameters for the
housing index process and the risk-free interest rate for the sample period of
1987–2007. We then calculate the risk premiums for various parameter com-
binations. Our numerical analysis leads to three important findings. First, risk
2The real estate market value and the equity market capitalization are retrieved from the Federal Reserve’s
statistical release Z.1, Table B.100 titled “Balance sheet of Households and nonprofit organizations”. The
table can be downloaded from http://www.federalreserve.gov/releases/z1/Current /z1r-5.pdf. The bond mar-
ket value is obtained from the Securities Industry and Financial Markets Association (http://www.sifma.org/
uploadedFiles/Research/Statistics/SIFMA_USBondMarketOut standing.pdf).
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premiums are significant for all contracts with longer maturities. Second, the
magnitude of risk premiums is large when the underlying housing index
exhibits high growth rate. Third, risk premiums can be positive or negative,
depending on whether the expected growth rate of the underlying index is higher
or lower than the risk-free yield-to-maturity.

The rest of the study is organized as follows. Second section describes
CME housing index derivatives and illustrates potential diversification benefits
of these contracts for portfolio management. Subsequent section proposes an
equilibrium model to value futures and options. Analytical expressions of risk
premiums and various comparative statics are derived. Penultimate section
conducts numerical analyses of risk premiums for the CME housing index
derivatives. Last section concludes the study. Proofs and tables are relegated to
the Appendix.

CME HOUSING DERIVATIVES AND THEIR
POTENTIAL BENEFITS TO PORTFOLIO
MANAGEMENT

In order to study the valuation of housing derivatives, it is instrumental to
understand the contracts traded on the CME. To this end, we first describe
specifications of the CME housing index contracts. We then provide some
insights into the potential benefits of these contracts in the context of portfolio
management.

CME Futures and Options on Housing Indices

The underlying variables for the CME housing contracts are based on the
SP/CS indices that are published by Fiserv CSW Inc. These indices are com-
puted based on the repeated-sales method.3 According to the CME, these
indices are widely recognized as the most reliable and authoritative measures of
residential housing price movements for a variety of purposes, including loan
portfolio due diligence, customer retention, loss reserve reviews, market sur-
veillance, mortgage default, loss and replacement analyses.4 The SP/CS indices
are established at 100 for the base year of 2000 and are updated and released
each month at 1:15 p.m. Central Time on the last Tuesday of the month. The
monthly housing indices are based on a three-month rolling window.5 Take an
index released on April 25, 2008 as an example. In this case, the index value
would be calculated based on transactions that occurred in February, March,

3For detailed discussions on the repeated-sales method, please consult Case (1986). In a recent paper, Shiller
(2008) outlined the advantages of using the repeated-sales method over the hedonic method.
4For further details, please see the CME website: www.cme.com/files/cmehousing_brochure.pdf.
5For further details about the SP/CS Indices, please refer to the CME’s housing index resource center at
www.cme.com/trading/prd/re/housing_OR.html.
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and April. By the same token, for the next index value released on May 25,
2008, price information for March, April, and May would be utilized in the
index calculation.

The CME has listed futures and options on eleven SP/CS indices. The first
ten are for the residential housing markets of the following metropolitan areas:
Boston, Chicago, Denver, Las Vegas, Los Angeles, Miami, New York, San Diego,
San Francisco, and Washington, DC. The last index is a market-capitalization-
weighted composite index for the ten metropolitan areas.

The CME housing index futures are listed with a February quarterly expira-
tion cycle (i.e., February, May, August, and November) and are settled at $250
times the indices. Table I illustrates the typical elements of a futures contract
and an option on a futures contract. In the example, a futures contract is written
on the New York housing index. The maturity is August 2009, and the futures
price is quoted at 200. The tick size is set at $250. If the realized New York hous-
ing index by the end of August 2009 is 195, then the payoff for a long position
will be $250 � (195–200) � �$1,250. For the call option on Chicago futures,
the maturity is November 2009, which is the same as that of the underlying
futures contract. If the realized Chicago housing index by the end of November
2009 is 165, then the call payoff for a long position will be max(165 � 155,0) �

250 � $2,500.
To stimulate trading activities, in September 2007, the CME added longer

maturities to the existing February quarterly cycles. The longer maturity goes
from one year to five years. In addition, on October 29, 2007, the CME intro-
duced futures and options on the S&P/GRA Commercial Real Estate Indices,
complementary to the SP/CS residential housing index futures and options.
The S&P/GRA indices are published as a joint venture between Standard and

TABLE I

Examples of CME Housing Futures and Options

Futures Call options on Futures

Location New York Chicago
Contract maturity February quarterly cycle of February quarterly cycle of

August 2009 November 2009
Tick size $250 times the SP/CS $250 times the SP/CS 

New York index Chicago index
Futures price 200
Strike level 155
Settlement date One business day after 25th One business day after 25th 

of the contract month of the contract month
The actual index at maturity 195 for August 2009 165 for November 2009
Payoffs at maturity for a long position (195�200) � 250 � �$1,250 max(165�155,0) � 250 � $2,500
Payoffs at maturity for a short position (200�195) � 250 � $1,250 �max(165�155,0) � 250 � �$2,500
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Poor’s and Global Real Analytics/Charles Schwab Investment Management.
These new products, based on five regional indices and four national property-
type indices, primarily target hedging needs in the commercial real estate mar-
ket. The five geographic regions include Northeast, Midwest, Mid-Atlantic
South, Pacific West, and Desert Mountain West, whereas the four national
property types include office, warehouse, apartment, and retail. Our valuation
framework in third section cast in the residential setting is equally applicable to
the commercial real estate setting.

Potential Benefits of CME Housing Derivatives
Contracts to Portfolio Management

Although housing index derivatives are intended for managing real estate risks,
they can be useful diversification vehicles in the context of portfolio manage-
ment. To make this point, we first construct the efficient frontier using only the
risk-free asset, the equity index, and the bond index. We then enlarge the port-
folio choice set by including index futures that track the movements of the
housing indices. We investigate the extent of return improvement for the same
level of risk. The position on the housing index futures is chosen so as to repli-
cate the housing index value.6

In this exercise, the three-month T-bill rates, retrieved from www.federal
reserve.gov, are used as returns from the risk-free asset; the S&P 500 index and
the Citigroup US Broad Investment Grade (BIG) index, both retrieved from
Datastream, are used to represent the US equity and bond markets, respectively;7

the housing index data are retrieved from www2.standardandpoors.com/
spf/pdf/index/CS_HomePrice_History_042952.xls. As the housing index data is
limited to a monthly frequency for the period of January 1987–December
2007, we end up with a final sample size of 252.

Table II presents the summary statistics. Panel A indicates that the risk-
free rate is quite volatile during the sample period of 1987–2007. It ranges from
a low of 0.72% to a high of 9.48%. There is very little skewness in the risk-free rate
in that the average (4.44%) is close to the median (4.68%). The bond market
has an average return of 7.08% and a volatility of 4.01%, whereas the equity
market has an average return of 8.02% and a volatility of 14.66%. It is worth
noting that the bond market performed much better than the equity market in
terms of Sharpe ratio. As for housing indices, the average return ranges from

6The specific futures position is dictated by the value of a futures contract in (6) and the relationship defined
in (10). That is, we can replicate the housing index value by taking 1/lfwd position in the futures contract and
Ke�R(t,T)(T�t)/lfwd in cash.
7The Citigroup US Broad Investment Grade Index (known as the Saloman BIG or Citigroup BIG) is a com-
monly used benchmark for US fixed-income funds. It measures the value of over 3,500 US investment-grade
debt instruments, including Treasuries, corporates, agency debts, government sponsored debts, mortgage-
backed securities and asset-backed securities.
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4.08% (Boston) to 6.70% (San Francisco), slightly lower than the returns from
the equity market and the bond market. However, the standard deviations 
for the housing indices are much smaller than those of the financial markets.
Specifically, volatilities of the housing markets range from 2.22% (Chicago) to
3.85% (Los Angeles), much lower than the equity market volatility of 14.66%.8

Moreover, the skewness and kurtosis statistics suggest that the distribution of
the housing market returns is close to normality, a useful fact for modeling the
housing index process in third section.

The last two rows in Panel A report the average returns for the two equal-
length, subsample periods. Clearly, the equity and bond markets have higher
average returns in the first subperiod. In contrast, the housing markets see a
higher growth rate in the second subperiod.

Insofar as the magnitude of correlations is the key to diversification bene-
fits, we report correlations in Panel B. Several observations are in order. First,
the correlation between a housing index and financial market returns is gener-
ally negative. In particular, correlations with the equity index range from
0.0029 (Chicago) to �0.1205 (Boston), whereas correlations with the bond
index range from �0.0056 (Chicago) to �0.1151 (Miami). Second, housing
indices are also negatively correlated with the interest rate and the magnitude
of correlations is generally larger compared with the correlations with the equity
and bond indices. Specifically, the correlations between housing indices and
the interest rates range from �0.0812 (San Diego) to �0.4743 (New York).
Third, as expected, the correlations among the housing market returns them-
selves are positive, ranging from 0.1411 to 0.8702. In addition, each index is
highly correlated with the composite index, with Los Angeles having the high-
est correlation of 0.9141, whereas Denver having the lowest of 0.3468.

The two subperiods witnessed similar correlation behaviors. For brevity,
we only report the correlations for the composite index in the last two rows of
Panel B. The composite index is negatively correlated with the equity and bond
indices in the two subperiods, and is highly correlated with other metropolitan
housing indices. It is worth noting that the correlation between the composite
index and the interest rate is positive in the first subperiod, whereas negative in
the second. As shown later, different levels of correlation have different effects
on risk premiums.9

8As shown in Milevsky (2004), similar housing market returns and volatilities are observed in Canada.
9The positive correlation for the period of 1987–1997 is mostly due to the macroeconomic activities in the
recession years, 1991 and 1992. Prior to the recession, the real estate value was growing as the economy
heated up while the Federal Reserve was jacking up the interest rate to fend off inflation and cool down the
economy, hence the positive correlation. During the recession, the interest rate was on the way down gradu-
ally, accompanied by the decline of the real estate market, again leading to a positive correlation. The second
subperiod (1998–2007) saw a normally growing economy in which lower interest rates would stimulate the
real estate market, hence the negative correlation.
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The overall negative correlation between housing index returns and finan-
cial market returns indicates significant diversification benefits should the
housing indices be introduced to a portfolio. Table III confirms this conjecture.
The first row in Table III presents the base case where the portfolio choice set
includes the risk-free asset, the S&P 500, and the bond index. The global min-
imum variance portfolio has an annualized expected return of 7.13% and an
annualized return volatility of 3.94%. A portfolio with a return volatility of 20%
has an annualized expected return of 8.37%. The second row in Table III pres-
ents results when the composite housing index is added to the portfolio.10 It is
evident that the housing index can significantly improve the portfolio return for
a given portfolio risk. For example, for a 20% portfolio volatility, the addition of
the composite housing index improves the portfolio return by 4.16% (i.e., from
8.37 to 12.53%). At a volatility level of 50%, the improvement is 12.03% (i.e.,
from 10.30 to 22.33%). Similar diversification benefits are also observed for the
two subperiods. For example, for a 20% portfolio volatility, adding the compos-
ite index can improve the portfolio return by 14.16% in the first subperiod and
14.35% in the second. The diversification benefits are similar to those docu-
mented by Quigley (2006) for the European markets. For example, Quigley
(2006) showed that, by including the Denmark housing index into the base
portfolio set, the net return benefit is 12.73% for a 50% portfolio volatility.

The results in Table III clearly demonstrate the tremendous diversification
benefit brought about by the housing indices. A natural question is: How come
investors are not flocking to the housing derivatives market to take advantage of

10We have also calculated the diversification benefit for each individual housing index. The results are simi-
lar to those of the composite housing index and are omitted for brevity.

TABLE III

Efficient Portfolios With or Without Housing Index

Global Minimum
Variance Portfolio Portfolio Risk sp

Sample Period E(rGMV) sGMV 20% 30% 40% 50%

Jan 1987–Dec 2007 Base case expected return rp 7.13% 3.94% 8.37% 9.02% 9.66% 10.30%
Adding the composite index 6.04% 2.03% 12.53% 15.80% 19.07% 22.33%

Jan 1987–Dec 1997 Base case expected return rp 8.20% 4.43% 12.99% 15.48% 17.96% 20.42%
Adding the composite index 3.47% 1.73% 27.15% 39.07% 50.98% 62.88%

Jan 1998–Dec 2007 Base case expected return rp 5.69% 3.17% 7.81% 8.89% 9.97% 11.04%
Adding the composite index 7.50% 1.97% 22.16% 29.54% 36.91% 44.28%

Note. This table presents the efficient portfolio returns based on the sample means, standard deviations and correlations presented
in Table II. The sample period is between January 1987 to December 2007. The 3-month T-bill rates are retrieved from the Federal
Reserve Board’s website whereas the monthly S&P 500 index and the Citigroup US Broad Investment Grade Index are retrieved from
Datastream. The monthly housing indices are obtained from www2.standardandpoors.com/spf/pdf/index/CS_HomePrice_
History_042952.xls.
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this benefit? One reason might be the lack of awareness of this benefit; another
might be the lack of liquidity. Both in turn affect each other. A virtuous mutual
feedback would improve both, just like the recent development in the weather
derivatives market.

EQUILIBRIUM VALUATION OF THE HOUSING
INDEX DERIVATIVES

Structure of the Economy

In this section, we propose an equilibrium model to accommodate the non-
tradability of housing indices. In particular, we extend Lucas’ discrete model
for a pure exchange economy with a financial market (Lucas, 1978) to a 
continuous-time economy with a financial market as well as a housing market.
As is standard, each agent can trade a single risky stock, pure discount bonds
and a finite number of other contingent claims written on the risky stock, the
pure discount bond or on the house. The risky stock can be viewed as the mar-
ket portfolio and its dividend stream {dt} can be understood as the aggregate
dividend in the economy. The total supply of the market portfolio is normalized
to one share, while the risk-free bond and contingent claims are all in zero net
supply.

Initially, the representative agent is endowed with one share of the market
portfolio and one house. The agent has a working life up to time T and post-
retirement life span up to . The work yields a constant wage y per unit of time.
The agent’s objective is to maximize the present value of his expected utility
from the pre-retirement consumption and the post-retirement wealth. To cap-
ture the essence of a home ownership constraint, we follow Cauley, Pavlov, and
Schwartz (2007) and assume that the agent cannot sell the house until his
retirement at time T.11 In other words, the agent plans to consume a fixed flow
of housing service until retirement.

The uncertainties in the economy are created by the aggregate dividend {dt}
and the housing value {Ht}. We assume that dt and Ht follow some exogenous
Markov processes on a given probability space (�, F, P). Denote the financial
asset prices at time t by a vector Xt and the corresponding vector of dividends by

qt. The cumulative dividends up to time t are defined as . The

agent’s information structure is given by the filtration Ft (dt, Ht, 0 � t � t).

Dt � �
t

0

qtdt

T

11As argued by Cauley et al. (2007), this housing consumption constraint captures the essence of the con-
straint faced by many mid-career families. That is, these families cannot afford to step up and are reluctant
to step down in terms of their family houses.
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Denote the representative agent’s portfolio holdings at time t as
, where , and indicate the number of shares held in the

market portfolio, the discount bond and other contingent claims, respectively.
The agent finances his consumption by his labor income and a continuous
trading strategy {ut, t � 0}.

Similar to Cauley et al. (2007), we assume that the pre-retirement utility
function is time-separable and separable between the housing consumption
and the nonhousing consumption. Furthermore, we assume that the nonhous-
ing service is independent of the market value of the home because the utility
derived by living in a house depends on its physical characteristics. Given these
assumptions, we formulate the agent’s optimization problem as follows:

where f is the rate of time preference.
The budget constraint states that the agent’s cumulative consumption up to

t is financed by labor income, the net selling of his securities (u0 � X0 � ut � Xt) plus
the cumulative dividends and cumulative capital gains. The first-order conditions

lead to the usual stochastic Euler equation:

Thus, the price of any security equals the expected discounted sum of its divi-
dends, with the marginal rate of substitution being the stochastic state price
deflator.

In equilibrium, the financial market clearing conditions dictate that the
representative agent holds one share of the market portfolio and nothing of 
the contingent claims. The goods market clears so that consumption equals
dividends generated from the market portfolio. Also, the housing market clears
so that the representative agent owns one house. Therefore, the equilibrium
price of any security given by the Euler equation becomes12

(1)Xt �
e�f(T�t)

Uc(dt)
Ea �T

t

Uc(dt) dDtb, 5t � (0, T).

Xt � e�f(T�t)Ea�T

t

Uc(ct) dDtbnUc(ct).

WT � HT � uT � XT

s.t.  Ht � ut �Xt� �
t

0

(ct� yt) dt � u0 �X0 � H0 � �
t

0

ut � dDt � �
t

0

ut � dXt

max5ct, ut6 E c �T
0

e�ftU(ct)dt � e�fTU(WT)d

ux	
tuB

t ,us
tut � (us

t, u
B
t , ux	

t )

12Another way to formulate the agent’s optimization with the home ownership constraint is to assume that
the agent never sells the house, as in Cooper and Ng (2008). Their argument is that only 4% of the US
households sell their homes each year during 1975 and 2007. Under this approach, we can obtain the same
Euler equation (1).
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In the remainder of third section, we first specialize the above valuation
equation with a particular preference and dividend and housing index processes;
we then derive the closed-form formula for housing index derivatives; and last-
ly, we define and examine risk premiums.

Dividend and Housing Index Processes

To obtain closed-form solutions, we adopt a utility function with constant rela-
tive risk aversion, that is, , where g is the risk-aversion
parameter. In addition, we assume a mean-reverting dividend process for the
market portfolio by appealing to Marsh and Merton (1987).

Assumption 1: The aggregate dividend process is governed by the following sto-
chastic process:

(2)

where zdt is a standard Wiener process, ad is the mean-reverting speed, sd is the
volatility, and md is the expected growth rate for the aggregate dividend.

In this economy, the other source of uncertainty is induced by the housing
market fluctuations. Based on the empirical evidence presented in Table II, we
model the housing index return as a geometric Brownian motion.

Assumption 2: The housing index process is governed by the following stochas-
tic process: 

(3.3)

where zHt is a standard Wiener process, and the correlation between dzd and
dzH is r. The expected return for the housing index is mH and its volatility is sH.

The assumed utility function allows us to determine the equilibrium price

of a pure discount bond by (1) as . Define the

yield-to-maturity as , the instantaneous risk-free rate 

is obtained as . Appendix A provides the proof for the following
proposition.

Proposition 3.1: The equilibrium yield-to-maturity R(t, T) and the instanta-
neous risk-free rate rt are, respectively

rt � lim
TSt

R(t, T) � f �
1
2
g2s2

d � gamd �
1
2
s2
d � ad lndtb.

R(t, T) � f �
1
2
g2s2

d

1 � e�2ad(T�t)

2ad(T � t)
� gamd �

1
2
s2
d � ad lndtb 1 � e�ad(T�t)

ad(T � t)
,

rt � lim
TSt
R(t, T)

R(t, T) � �
1

T�t
lnBt(T)

Bt(T) � e�f(T�t)EtaUc(dT)

Uc(dt)
� 1b

dHt�Ht � mH dt � sH dzHt

ddt�dt � (md � ad lndt) dt � sddzdt

U(ct) � c1�g
t �(1�g)
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The instantaneous risk-free rate follows a mean-reverting process similar to
that in Vasicek (1977) That is, the spot
risk-free rate has a mean reversion speed of ad, a long-run mean of f � 0.5g2sd

2

and a volatility of gadsd.
The challenge of applying the equilibrium model lies in the fact that the

aggregate dividend process and the risk-aversion parameter of the representa-
tive agent are not observable. Fortunately, we can bypass this difficulty by 
utilizing the relationship between dt and rt and by using the fact that rt is
observable. Specifically, given the linear relationship between ln dt and the
endogenized interest rate rt, we can infer the parameters for the aggregate divi-
dend process from the observed interest rates. To do so, we re-parameterize the
interest rate process as

(4)

That is, we can replace the parameters for the aggregate dividend process by 

those of the interest rate using the following relations: 

Accordingly, the yield-to-maturity can be re-expressed as:

(5)

With the above results, we proceed to the pricing of housing index derivatives.

Equilibrium Valuation of Housing Index Derivatives

The value of a forward contract at time t, ft(Ht, K, T) with a delivery price K and
a maturity T � t can be determined through the Euler equation (1) as

. At the initiation, the forward price 

at time t, Ft(Ht, T), is set to be the delivery price K so that the value of the forward

contract is zero. Thus, we have Similarly, we can use

(1) to value European call and put options with a strike price K and a maturity
T � t. Their prices at time t, ct(Ht, K, T) and pt(Ht, K, T), are determined as

and

pt(Ht, K, T) � e�f(T�t) EtaUc(dT)

Uc(dt)
max (K � HT, 0)b.

ct(Ht, K, T) � e�f(T�t) EtaUc(dT)

Uc(dt)
max (HT � K, 0)b

Ft(Ht, T) �
E[Uc(dT)HT]

E[Uc(dT)]
.

ft(Ht, K,T) � e�f(T�t)EaUc(dT)

Uc(dt)
(HT � K)b

R(t, T) � br �
1
2
asr

ar
b2 c1 �

1 � e�2ar(T�t)

2ar(T � t)
d � (rt � br)

1 � e�ar(T�t)

ar(T � t)
.

sr � gadsd, rrH � �r.

ar � ad, br �f�
1
2
asr

ar
b2

,

drt � ar(br � rt) dt � sr dzrt.

drt � ad(f � 1
2g

2s2
d � rt) dt � gadsddzdt.
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To facilitate the presentation of option prices, let CBS and PBS stand for the
Black–Scholes (Black & Scholes, 1973) call and put values with the following
expression:

with

The following proposition states the forward price, the value of a forward
contract and European call and put prices. Proofs are summarized in Appendix B.

Proposition 3.2: The equilibrium housing forward price at time t with a maturi-
ty T � t, Ft(Ht,T), and the value of a forward contract at time t with a delivery
price K and a maturity T � t, ft(Ht, K, T), are

and

(6)

The equilibrium prices of European call and put options at time t with a
strike price K and a maturity T � t are

and

(7)

The forward price increases with the expected growth rate of the housing
market mH, its volatility sH, the volatility of the interest rate sr, and the corre-
lation between the housing index and the interest rate rrH; it decreases with the
mean revision speed for the interest rate ar. The long-run mean of the interest
rate has no effect on the forward price. Proposition 3.2 also indicates that the
value of a forward or option contract is priced in the traditional way, once 
the forward price is determined.

Risk Premiums for Housing Index Derivatives

The nontradability of housing indices commands a risk premium in that the equi-
librium value of a derivative is generally different from a preference-free value 

pt(Ht, K, T) � PBS(Ft(Ht, T), T � t, K; R(t, T), R(t, T)sH).

ct(Ht, K, T) � CBS(Ft(Ht, T), T � t, K; R(t, T), R(t, T),sH)

ft(Ht, K, T) � [Ft(Ht, T) � K]e�R(t,T)(T�t).

Ft(Ht, T) � Ht exp amH(T � t) � rrHsH
sr

a2
r

 (1�e�ar(T�t) )b

d1 �
ln (St�K) � (r � q � s2�2)t

s2t  and d2 � d1 � s2t.

PBS(St, t, K; r, q, s) � Ke�rtN(�d2) � Ste
�qtN(�d1)

CBS(St, t, K; r, q, s) � Ste
�qtN(d1) � Ke�rtN(d2)
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of the same derivative. To gauge this risk premium, we need to derive the risk-
neutral values of forwards and options contracts. To this end, we require the 
risk-neutral processes corresponding to (3) and (4). Let’s start with the risk-free
interest rate. The equilibrium price of a pure discount bond is 

. We can then write the risk-neutral
process as , where ,
which in turn implies the following the risk-neutral process for the risk-free
rate under the re-parameterization

(8)

The expressions in (4) and (8) indicate that the only difference between
the risk-neutral and the equilibrium processes lies in the long-run mean, with the
risk-neutral long-run mean being higher by (sr /ar)

2. Accordingly, the yield-to-
maturity in the risk-neutral world can be written as

As , it is easy to show that the yield-to-maturity in the risk-

neutral world, RQ(t, T), is the same as the equilibrium yield-to-maturity R(t,T)

in (5).
Next, we determine the risk-neutral process for the housing index. As the

risk premium is defined with respect to the situation where the housing index
was taken as a traded asset, we can write down the following risk-neutral process:

(9)

The interest rate and housing index processes in (8) and (9) allow us to
derive the risk-neutral counterparts of the elements in Proposition 3.2, sum-
marized in the following proposition. Proofs are collected in Appendix C.

Proposition 3.3: At time t, the risk-neutral forward price with a maturity T,
, and the value of the forward contract with a delivery price K and a

maturity T, are

f Q
t (Ht, K, T) � [FQ

t (Ht, T) � K]e�R(t, T)(T�t), 5 T � t.

Ft(Ht, T) � Hte
R(t,T)(T�t),

f Q
t (Ht, K, T),

FQ
t (Ht, T)

dHQ
t �HQ

t � rt dt � sH dzQ
Ht.

bQ
r � br �

s2
r

a2
r

� bQ
r �

1
2
asr

ar
b2

�
s2

r

4a3
r

1 � e�2ar(T�t)

(T � t)
� art � bQ

r �
s2

r

a2
r
b1 � e�ar(T�t)

ar(T � t)
.

RQ(t, T) � �
1

T�t
lnEt[e

�� Tt rsds]

drt � aQ
r (bQ

r � rt) dt � sQ
r dzQ

rt � ar cbr � asr

ar
b2

� rt d dt � sr dzQ
rt.

dzQ
d � gsd dt � dzddBt�Bt � rt dt � gsd(1 � e�ad(T�t) ) dzQ

dt

g2s2
d(1 � e�ad(T�t) )]dt �gsd(1 � e�ad(T�t) ) dzdt

dBt�Bt � [rt �
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The risk-neutral European call and put prices with a strike price K and a
maturity T � t are

with

Using the equilibrium and risk-neutral valuations in Propositions 3.2 and
3.3, we define the risk premium in the forward price as

(10)

Straightforward comparative static analyses show that the risk premium
lfwd increases with the expected housing index return mH, its volatility sH, the
correlation between the housing index and the interest rate rrH, and the time to
maturity of the forward contract. It decreases with the long-run mean of the
interest rate br. Effects of the mean-reverting speed of the interest rate ar and
the volatility of the interest rate sr are indeterminate.

The risk premiums for call and put options can be defined in a similar
fashion:

(11)

The comparative statics suggests that the risk premium for a call increases
with the expected housing index return mH and the correlation between the
housing index and the interest rate rrH. The risk premium for a put decreases
with the expected housing index return mH and the correlation between the
housing index and the interest rate rrH . The effects of other model parameters
are indeterminate.

To assess the magnitude of the actual risk premiums embedded in the
CME contracts, we perform numerical analyses in the next section.

lcall �
ct(Ht, K, T)

cQ
t (Ht, K, T)

� 1, and  lput �
pt(Ht, K, T)

pQt (Ht, K, T)
� 1

� exp c amH � rrHsH
sr(1 � e�ar(T�t) )

a2
r (T � t)

� R(t, T)b (T � t) d � 1.

lfwd �
Ft(Ht, T)

FQ
t (Ht, T)

� 1

Bs2
H � 2rrHsH

sr

ar
a1 �

1 � e�ar(T�t)

ar(T�t)
b �

s2
r

a2
r
a1 � 2

1 � e�ar(T�t)

ar(T � t)
�

1 � e�2ar(T�t)

2ar(T � t)
b.ŝH �

pQ
t (Ht, K, T) � PBS(Ht, T � t, K; R(t, T), 0, ŝH),

cQ
t (Ht, K, T) � CBS(Ht, T � t, K; R(t, T), 0, ŝH),
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QUANTIFYING RISK PREMIUMS FOR THE CME
HOUSING INDEX DERIVATIVES

We start by jointly estimating the model parameters for housing indices and the
interest rate, using the maximum likelihood method. As results for individual
housing indices are similar to those of the composite housing index, to save
space, we only report estimated model parameters for the composite housing
index and the interest rate in Table IV. The estimation is carried out for the full
sample as well as the two subsamples. There are a few important observations.

First, the estimation of the parameters describing the composite housing
index (mH and sH) is quite accurate, as indicated by the small standard errors.
The estimation accuracy is also reflected in the closeness between the esti-
mates here and the corresponding statistics shown in Table II.

Second, the estimated parameters for the interest rate process exhibit sim-
ilar features documented by the existing literature (e.g., Chan, Karolyi,
Longstaff, & Sanders, 1992). In particular, the estimated long-run mean is
close to the corresponding sample average. Moreover, the estimation errors for
the long-run mean and the volatility are small for all sample periods. In con-
trast, the estimation error for the reversion speed is relative large.
Notwithstanding the large estimation error, the estimate for the reversion
speed indicates a much faster reversion in the first subperiod.

Third, the estimated correlation between the composite housing index and
the interest rate is positive, albeit with a large standard error.

TABLE IV

Model Parameters Estimated With the Maximum-Likelihood Method

Composite
Housing
Index Ht T-bill rt Correlation

Sample Period mH (%) sH (%) ar br sr rrH Log-Likelihood

Jan 1987–Dec 2007 5.587 2.524 0.468 0.042 0.002 0.084 �2442
(0.544) (0.113) (0.249) (0.010) (0.000) (0.066)

Jan 1987–Dec 1997 2.493 1.924 1.194 0.054 0.002 0.177 �1293
(0.566) (0.119) (0.465) (0.006) (0.000) (0.085)

Jan 1998–Dec 2007 8.982 2.747 0.340 0.028 0.001 0.117 �1177
(0.890) (0.178) (0.318) (0.016) (0.000) (0.097)

Note. This table presents the estimated parameters for the composite housing index (Ht) and the interest rate (rt ) processes that are
specified as dHt � mHHdt � sHHtdzHt and drt � ar(br � rt )dt � srdzrt , where mH and sH are the expected return and volatility for the
housing index, ar, br, and sr are the mean-reversion speed, long-run mean, and volatility for the interest rate. The correlation between
dzH and dzr is rrH. The monthly composite housing index is retrieved from www2.standardpoors.com/spf/pdf/index/CS_HomePrice_
History_042952.xls, whereas the three-month T-bill rates are downloaded from the Federal Reserve Board’s website. All parameters
are estimated using the Maximum-Likelihood Method. The numbers in parentheses are standard errors.



678 Cao and Wei

Journal of Futures Markets DOI: 10.1002/fut

Risk Premiums for CME Futures and Options 
on Futures

To facilitate calculations, we take the housing index levels and the interest rate
level in December 2007 as the spot values. All other parameters take on the
estimated values shown in Table IV. We start with the futures contracts first.

Using equations (6) and (10), we compute futures prices and risk premi-
ums for three different maturities: one year, two years and five years. The
results are presented in Panel A of Table V. Three observations are in order.
First, risk premiums increase with maturity, which confirms our comparative
statics analysis. Second, the higher the expected growth rate for the underlying
housing index, the higher the risk premium, again confirming the comparative
static results. Third, risk premiums for futures contracts can be positive or 
negative, depending on the relative magnitudes of the index growth rate and
the risk-free yield-to-maturity. For instance, the two-year yields-to-maturity are
3.433%, 4.468%, and 2.987% for the full, first-half and the second-half sample
periods, compared against the corresponding growth rates of 5.587%, 2.493%,
and 8.982%. They result in risk premiums of 8.25%, �1.92%, and 17.47%.
When the growth rate is higher than the yield-to-maturity, the risk premium is
positive, and vice versa.13

We now turn to risk premiums for options. As the results are similar for
calls and puts, we only discuss call options for brevity. Call prices and risk pre-
miums for the composite index are computed based on (7) and (11) for three
maturities (i.e., one year, two years, and five years) and three moneyness levels
(i.e., K/Ht � 0.95, 1, and 1.05). Results for different maturities are qualitative-
ly the same. So we only report the results for the two-year maturity case in
Panel B of Table V. We make several important observations. First, risk premi-
ums for call options are much higher than those for futures contracts with the
same maturity.

Second, the absolute value of the risk premium for a call option decreases
with its moneyness. That is, the risk premium for an in-the-money call is small-
er than that for an at-the-money call, which, in turn, is smaller than that for an
out-of-the-money call. For example, based on the full sample estimates, the risk
premiums are 102.17%, 222.41%, and 773.86% for the in-, at-, and out-of-the-
money calls, respectively.

Third, similar to futures contracts, the higher the expected growth rate for
the underlying housing index, the higher the risk premium, confirming the
comparative static result. For instance, the growth rate of 8.982% for the second

13Given the current declining real estate market, the CME market quotes suggest that traders are using neg-
ative growth rates for the underlying indices, implying negative risk premiums for the CME futures contract.
For example, at housingrdc.cme.com, the bid and ask for the composite index on June 30, 2008 were quoted
at 171 and 177 for a November 2008 maturity, 160 and 174 for a February 2009 maturity.
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subperiod is the highest, and the second subperiod sees the largest risk premi-
um for all moneyness levels.

Fourth, the risk premium for a call option can be either positive or nega-
tive, depending on whether the index growth rate is higher or lower than the
risk-free yield-to-maturity. For instance, the risk premium is negative for all
moneyness levels in the first subperiod as the growth rate is lower than the
yield-to-maturity in this period.

In summary, the numerical results in Table V suggest that (1) risk premi-
ums for futures and options are sizable for maturities longer than one year, 
(2) risk premiums increase with the growth rate of the underlying housing
index, and (3) risk premiums can be positive or negative, depending on the rel-
ative magnitudes of the growth rate and the risk-free yield-to-maturity.

Risk Premiums Versus Estimation Errors

So far, our numerical analyses are based on estimated parameters presented in
Table IV. As noted earlier, estimation errors for the interest rate mean-reversion
speed (ar) and the correlation between the composite housing index and the
interest rate (rrH) are relative large. In this subsection, we examine the mar-
ginal impacts, as well as the joint impacts, of these two estimation errors on
risk premiums. Specifically, to investigate the marginal impact of the estima-
tion error for ar, we consider two scenarios: The value of ar is either below or
above the estimated value by one standard error. Similar analysis is carried out
for the correlation parameter rrH. As for the joint effects, we consider four sce-
narios, all characterized by a one-standard-error distance from the estimate:
(1) ar and rrH are both below the estimates, (2) ar is below, whereas rrH is
above the estimates, (3) ar is above, whereas rrH is below the estimates, and 
(4) ar and rrH are both above the estimates. To conserve space, we only present
in Table VI results for futures contracts and in-the-money calls with a two-
year maturity.

By and large, the effects of estimation errors on housing index derivative
values are small. Let’s first examine the marginal impact of the estimation error
in the reversion speed, ar. Panel A shows that the biggest price difference for
futures is $0.06 (�$240.43 � $240.37) associated with the second subsample
estimation. This is equivalent to a 0.025% pricing difference, which is negligi-
ble. The impact for call options is slightly bigger, but still negligible. Panel B
indicates that the biggest price difference for call options is $0.57 (�$39.42 �

$38.85), translating to a 1.47% pricing difference.
The marginal effects of the estimation errors in the correlation parameter

rrH are even smaller. The biggest price difference for futures is $0.01
(�$224.57 � $224.56 or $211.07 � $211.06) associated with the full sample
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and the first subsample estimates, equivalent to a 0.0047% percentage differ-
ence. Similar results hold for calls.

The joint impacts are generally small too. The biggest price difference for
futures is $0.06 (�$240.43 � $240.37), equivalent to a 0.025% percentage
difference, whereas the biggest price difference for calls is $0.57 (�$39.42 �

$38.85), corresponding to a 1.47% percentage difference.
It seems that most of the large price differences reside in the second 

subperiod. One possible reason may be the higher interest rate volatility in this
period. Presumably, the higher volatility amplifies the impact of estimation
errors. Nevertheless, our sensitivity analyses suggest that the estimation errors
in the correlation and the reversion speed parameter do not have a material
impact on the values of housing index derivatives.

CONCLUSION

The lack of active trading of housing index derivatives, despite the higher price
volatility of the real estate market, might be due to the absence of comprehen-
sive valuation models. This study provides some guidance for theoretical valua-
tion, aiming at stimulating more interests in housing index derivatives.

We first derive closed-form valuation formulas for housing index deriva-
tives. Specifically, we implement an equilibrium valuation framework to cir-
cumvent the nontradability of housing indices. In particular, we extend Lucas’
model (Lucas, 1978) and introduce housing market uncertainty to the econo-
my as the additional source of risk. In addition to the traditional portfolio
wealth, we include labor income and house value as part of the agent’s overall
wealth. Under the assumptions of a mean-reverting aggregate dividend process,
a geometric Brownian motion for the housing index, and a preference function
with constant relative risk aversion, we are able to endogenize the risk-free
interest rate and obtain closed-form valuation formulas for futures and options.
The formulas are comprised of parameters characterizing the underlying hous-
ing index and the interest rate, and their correlation.

We then examine the risk premiums arising from the nontradability of
housing indices. To this end, we define risk premium as the percentage differ-
ence between the equilibrium value derived in our framework and the risk-neutral
value derived by assuming tradability of housing indices. Aside from providing
analytical, comparative statics concerning risk premiums, we also carry out
numerical analyses tailored to the CME contracts. The calculation of risk pre-
miums is facilitated by empirically estimated parameters governing the housing
index process and the risk-free interest rate. Three important findings emerge.
First, risk premiums are significant for all contracts with maturities longer than
one year. Second, the expected growth rate of the underlying housing index is
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the key determinant for the magnitude of risk premiums. Third, risk premiums
can be positive or negative, depending on whether the expected growth rate of
the underlying index is higher or lower than the risk-free yield-to-maturity.

APPENDIX A

Proofs of Proposition 3.1: Yield-to-Maturity and
Instantaneous Risk-Free Rate

Proof: We first derive the pure discount price with maturity T at time t � T.
From the Euler equation (1), we have

The conditional density for lndT/lndt has a Gaussian distribution

with

. (A1)

Therefore, the price of a pure discount bond can be computed as follows:

The yield-to-maturity, R(t, T), is defined through e�R(t,T)(T�t) � Bt(T).
Therefore,

Then, the spot instantaneous interest rate rt is

rt � lim
TSt
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1
2
g2s2

d � gamd �
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APPENDIX B

Proof of Proposition 3.2: Equilibrium Valuation 
of Housing Index Derivatives

Proof: The value of a forward contract with a maturity T and a delivery price K
is determined as

The conditional joint density for (ln dT /dt, ln HT/Ht) is 

with 
d(t, T) and �d(t, T) being defined in (A1), and

Therefore, the value of a forward contract is computed as

�Ke�R(t,T)(T�t).

� Ht exp amH(T � t) � rgsH
sd
ad
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At the initiation, we set the value of the forward contract to be zero to
obtain the forward price. That is, the forward price is

Given the re-parameterization

we have

Thus, we can restate the value of the forward contract as

Now we consider a European call option with a maturity T and a strike
price K on the housing index. It is priced as follows:

Based on the joint conditional density for (ln dT /dt, ln HT /Ht), we can eas-
ily show that

� e�R(t,T)(T�t) Ft(Ht, T)N(d1) � Ke�R(t,T)(T�t) N(d2),
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sd
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where

The European put option price can be determined through the put-call parity
condition since we have the value of a forward contract and the European call price.

APPENDIX C

Proof of Proposition 3.3: Risk-Neutral Valuation of Housing Index Derivatives

Proof: Under the risk-neutral approach, the value of a forward contract with a
maturity T and a delivery price K is determined as

The conditional risk-neutral joint density for is
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with

Therefore, the value of a forward contract is computed as

At the initiation, we set the forward price to be the delivery price so that
the value of the forward contract is zero. That is, the forward price is

Consider a European call option with a maturity T and a strike price K on
the housing index. The risk-neutral value of this call is priced as follows:

Using the joint conditional density for , we can easily
show that
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where

Again, given the risk-neutral value of a forward contract and the price for
a European call, we can determine a European put option price through the
put-call parity condition.
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