Pricing the
weather

Weather derivatives are an eminently sensible risk management tool, yet the market
remains small and illiquid. One reason for this is that traditional options pricing
techniques fail to capture the unique characteristics of weather. Here, Melanie Cao and
Jason Wei propose a new approach that attempts to rectify this problem

bout $1 trillion of the $7 trillion US economy is weath-
er-sensitive (Challis, 1999, and Hanley, 1999). For ex-
ample, weather conditions directly affect agricultural
output and seasonal demand in the energy sector, and
indirectly affect retail businesses. Although the market
for weather derivatives has been growing steadily, the
bid/ask spread for a typical contract is still very large and there is not yet
a widely accepted pricing method used by weather derivatives participants.
In this article, we propose a theoretically intuitive and empirically appeal-
ing model to price temperature derivatives.'

We focus on heating degree-day (HDD) and cooling degree-day (CDD)
products. Our starting point is modelling the statistical behaviour of the daily
average temperature, which is very different from that of a security price.
For example, temperatures are seasonal and cyclical and can be predicted
with reasonable accuracy for the next day or two, and vary within a well-
defined range in the long run, none of which is a feature of security prices.

The temperature variable
We first examine 20-year historical daily temperatures for Atlanta, Chica-
go, Dallas, New York and Philadelphia, covering the period 1979-1998.
Other than the usual cyclical/seasonal features mentioned above, the data
also reveal less conspicuous characteristics. For example, daily tempera-
tures exhibit strong short-term autocorrelations that are significant for the
first three lags. Moreover, the temperature tends to vary more in the win-
ter than in the summer. To facilitate further discussions, let us index the
years in the sample period by yr, thus yr = 1 for 1979, yr = 2 for 1980,
., yr = 20 for 1998. Also, we index January 1 ast = 1, January 2 as t =
2 and so on for 365 days in a year. Denote Yyr¢ as the temperature on date
t in year yr. Below, we define for date t, the mean temperature Y, and the
standard deviation of temperature V, as*

1 20
Yt = —26 2y{=1 Yyr,t and

i = \fzo 2 M=% ¥ t=12..365

Figure 1 plots the standard deviation for each day of the year for Atlanta
and Chicago. The graph shows an overwhelming seasonal pattern in the
temperature variations. This seasonal phenomenon is common for all cities
in consideration.

With the above in mind, we can postulate the necessary features that a
model for the daily temperature ought to possess. First, at the very least, it
should capture the seasonal cyclical patterns; second, the daily variations in
temperature must be around some average “normal” temperature, to be elab-
orated on later; third, since temperatures are forecastable (at least for the
1 The literature on weather derivatives pricing is very scanty in both the practitioners
world and the academic world. Dischel (1998) used a discussion process to model
temperatures. Dischel (1999) and Hunter (1999) briefly examined the so-called “burn
rate” method, or the historical simulation method
2 To simplify the analysis, we have deleted the observations for February 29 from the
sample. Therefore, each year consists of 365 days and the sample size for 20 years
is 7,300

short run), the model should allow forecasts to play a key role in projecting
temperature paths in the future; fourth, it should incorporate the autore-
gressive property in temperature changes (ie, a warmer day is most likely
to be followed by another warmer day, and vice versa); fifth, in light of fig-
ure 1, the extent of variation must be bigger in the winter and smaller in the
summer; and sixth, a projected temperature path into the future should never
wander outside of the acceptable range of the temperature for each pro-
jected point in time (for instance, it is conceivably impossible for a summer
day in New York City to see a temperature of —15 degrees Fahrenheit).

Although a diffusion process, eg, a mean-reverting process, is capable
of accommodating most of the required features, we decide against it for
two reasons. First, a one-factor diffusion process cannot incorporate au-
tocorrelation in the temperature innovations; second, due to the continu-
ous (and typically Markovian) nature of a diffusion process, it is possible.
to have a temperature path that does not resemble a real one. In light of
the above, we resort to an autoregressive, discrete model.

Define U, as the daily temperature whose mean and trend have been
removed, ie:

Upe =Yt -Ye ¥V W=12..,20and t=12..,365 (1)

where ¥, .+ is discussed below. The daily temperature residual is assumed
to be described by a k-lag autocorrelation system®:

Uy = E,kzl PUyr,t + Oy X éyr,t

Oyg =0 -0y [sin(nt/365+9)|

&yt ~iidN(0,1)

vV y=12..,20 and t=12..,365

where p; (i= 1, 2, ..., K) is the autocorrelation coefficient for the i lag,
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A. Maximum likelihood estimation

results

Py Pa g T a, o Log-
I'hood
Atlanta
G.BE33 03085 00322 75980 50812 -01881 -20,626
{0.0717170) {0.01520) (0.01169) (0.12086) (D_14603) (0.01067)
i Chicago
0vEss 02570 00428 THZED 31294 02014 -23.130
(0.0 170) (D.0148T) (001170 (0.13822) (D 18181) (00231 E)
Dallas
OE158 02436 00201 85378 63340 -0.1418 -21.381
(0.0 170) (0.04483) (0.01170) (0. 14060) (0. 16B00] {D.00853)
MNew York
0. 7553 0,263 0.0463 6.0372 2,735 0.2432 21,718
[0.07188) (0.01433} [0.01165) (0.11241) (0145209 (0.02238)
Philadelphia AR
07726 02505 00473 68034 34654 -02005 -21,702
0.01165) (0.071448) (D.01169) [0.11957) (0153600 [0.01932)

Malg;  [afine L N

s then the estimabon sysiem is:

Tt/ ZES+ b )

Sz is the source of randomness of the daily average iemperature, which
assumes @ standard normal distribusion, N(O, 1), and &, is the day-spe-
cific volatility modelled as a sine wave 1o reflect the fifth requirement and
the feature in figure 1. The parameter ¢ captures the proper starting point
of the sine wave, The autccorrelation set-up reflects the fourth jree-
ment, The remaining features are capiured by the mﬁmﬁmﬂﬂ
which we will delineate next,

In the context of valuations (which is necessarily forward looking), ¥
hﬁmﬂyhmﬂrﬂmﬂn:hdﬂﬂylwm,mﬁ
be plugged into the system as an input. The model in (1) and (2) will then
generate possible realisations of tempersiures around the forecasts by in-
corporating the necessary features pestulated above. However, 1o gener-
ate possible temperature realisations from (1) and (2), we must first estimate
the model parameters p, @, &, and ¢. In estimations, vt I also an input
and must b properly chosen to reflect the required features discussed be-
fare. The first and the second requirements would imply that the previ-
ously defined average duily temperature, ¥, might serve the purpose,
Hewever, a moment of reflection would rube it out. Given thar we could
have an entire season below or above the average seasonable tempera-
ture (for instance, the: ternperature of almost the entire winter of 1980 In
New York city was lower than average), using Y, to estimate the system
would, for one thing, rely distort the meaning of the standard devia-
tion. We must choose Y, such that it is roughly the middle point of vari-
atdon for any period in question, To this end, we modify the simple average
daily temperature, Y, in the following way: 1) for each month of the vear,
we calculare the average of the daily averages ¥, and there will be 12 such
monthly averages; 2) for each pamicular year, we calculate the realised, av-
erage temperature of each month; 3) for each month, we find the differ-
ence between the actual monthly average from step two and the average
ﬁunaepmuﬂi]waﬁuﬁﬂ:ﬂmlemnfummmrﬁfm%nmh
by the quantity calculated in step three, and this adjusted meanis ¥ and
wﬂiherdmadmasmcadjuagdnmtcmpemﬂhmuﬂﬁﬁh
to shifi the simple daily means ¥, io reflect the range of realised tempera-
tures, which can be quite different from historical averages, To illustrate
the adjustment mechanism, suppose cur concern is April 1985, and sup-

pose the mean of the average daily temperature for the month of April,
calculated from step one, happens to be 80 degrees Fahrenheit. We now
calculate the average of the 30 realised daily temperanres for April 1985
and suppose it is 55 degrees Fahrenheit, which Indicares a colder than nor-
mal April, This is the average from step two. We then follow step three o
find the difference between the two averages: 55 — 60 = —5, Finally, fol-
lowing step four, we adjust each of the historical average temiperature Y,
for April by -5 degrees Fahrenheit. Suppose the historical daily average
temperatures for April 1, 2, 3, 4, .. | 30 are 58, 63, 60, 65, ... 70 degrees
Fahrenheit, then the adjusted mean averages for Aprl 1, 2, 4, 4, ..., 30 of
1985 will be 53, 58, 55, 60, _.. , 65 degrees Fahrenheit. The ey ill assume
these values for April 1985 in actual estimations

Estimation of the temperature system
For a given aumber of lags, K, the system proposed in (1) and (2) involves
the following parameters, Py, Pge Par -+ + Py O 0y and & The residual
specification allows us to perform a maximum likelibood estimation of the
patameters. To determine the cur-off number of lags, we camy out se-
quential maximum likelitood estimations in the following fashion. We first
assume Kk = 1 and proceed 1o estimare p,, @, o, and §, and record the re-
sulting maximum likelibood value. We then assume k = 2, estimate p,,
Py O, €y and §, and record the maximum likelihood value, and 5o on. We
hal the estimation when the maximurn likelihood value ceases o Improve,
The optimal number of lags tumns out to be three, The estimation results
are presented in tmble A. It can be seen that almost all parameters are es-
timated with very low standard errors, implying the proper specification
of the estimation system. This is by no means a Auke since we have ex-
tensively explored and eliminated many other systems. In addition, stan-
dard ermors of the parameter a, are very small compared with the estimated
value of ¢, implying that the sine wave fining 1o the overall volarility struc-
ture it indeed appropriate and useful. Finally, the first-order awtoregres-
sive behaviour tends to be stronger with southern cities, and p, has the
highest value for Adanta. Roughly, a stronger auiocorrelalion means less
drantatic changes in temperature, and vice versa. Atlanta indeed has the
lowest overall stardard deviation in the sample period.

Valuation of HDD/CDD derivatives

Daily HOD and CDD are formally defined as:
Deily HOD -mam(s&'F—m average temperature, 0)  and
Deity COD =max (daily average temperature - 65, 0)

Derivatives contracis are typically writen on cumulstive HDDs or CDDs
over a period of, say, one month or 2 whole season, For a twpical north-
ern of midwestern US city (eg, New York and Chicago}, an HDD season
goes from November to March inclusive, and 3 CDD season goes from May
to September inclusive, April and October are called shoulder months and
are excluded in HDD/CDD caleulations, OF course, the definition of 2 HDD
or DI season can vary across cilies,

We have shown elsewhere (Cao & Wei, 1999) that, under certain condi-
tions, the market price of temperature risk is insignificant, and risk-neutral
valuation can be applied* Conskder an HDD forward contract with an ac-
cumulation period starting at T, and ending ar matriry T, > T,. Denote
HmﬂirT:?'I;’-Tl"ﬂ‘fﬁfl-il’,,m.n.ﬂ)[)mmbc prey
ilarly. The HDD/CDD forweard price will simply be the expected value of
the cumulative daily HDD or CDD over the contract period. With the auto-
correlation terms, it is difficult to obtain closed-form formulas. However, if
we set the autocorrelations to zero, the forwand prices can be expressed asc

¥ We confess a sigiht abuse of nofaion hare. Notios that at the begining of year T,
witr st wes ihe data from e end of the previous vedar, (- 1), (o calcudats the sl
mgrassive BTNS. i i undsreiood that 1he incker v wil sutomsticaly lake sppropdate
vasuas whan

required z
* The period of one monih ks chosen as & tmde-off. Too long a period wif nar sove
e non-pentring problam and 100 shorm & panod will unnecassany’ axagoansle the
short-1emm Ructuations and diminah the mesning of “mvemage” or “mean”. Nesolsss
I say, ond could by more sophisticated iy making the adiustments. For instance,
rathar fhan the calancar Monihs, one could shways centre the day i ques-
tien i 8, #ay, 30-day parod and make the above adfustients o a roling over basks

58 + RIS = NUAY 2000



B. Option prices for a CDD season

Historical simulation

Strike DOption
price virlue
Atlanta Cail 1.812.00 ar.g2
Fut are2
Chicago Cal B23.60 4,58
Pl A4.88
Dallas Call 2,424,585 BE.02
Put BE.02
MNew York Call 1,181.80 S57.72
Pust 57.72
Philadelphia Call 1.239.75 0,29
Piit B80.29

Regular simulation

Forecast A Forecast B

Strike Option Strike Option
price value price valie
1.7¢7.98 3316 1,893.41 33.95
33.44 34,24
G674.80 35.25 B5H.24 d43.87
30.37 43.78
240565 34,35 3.153.45 35.01
.72 35,50
1,101.80 34.31 1,228,855 35,23
34 .49 a5.43
1,148.35 a5 1,286,419 ATAaT
35,89 37.38

Note: under “historical simulation”, we assume that the futune will mimic histary exactly according 1o the sample data, The strike prices are the hisiorical

average CODs. Under "simulation forecast A7, the simulation e based an (1}, (2) and table A, and tha forecast is the historical a

verage temperature. The

strike price is the seasonal CDD of the averages. Lindar “simulation forecast B, the simulation is based on (1), (2) and table &, and tha forecast |15 e

adjusted average emperature, The strike pric

Foo (LT, %)=
2:. [55 = ?,_,]x N[ (3
- .

% o i L T

where N{-) 1s the cumulative density function of a standard normal variable,
HIDD and CDD options can be handled in a similar way. Consider 2 Eu-

ropean-style option writien on HDDNT,, T,) with matusity T, and a strike

price X. Denote the call and put prices at time t as Cyegt, T,, T,, X) and

Pupolt Ty Ty, X0, respectively. With a risk-free rate T, the call and pur val-

ves can be expressed as:

Cioo (t T, s X)= 000, f‘“'ﬁ"mfﬁﬁ:}- x-o)) 5

PLT T X ot =COOLT 0N (8)

The values of call and put options wrien on COD(T,, T,) can be ex-
pressed in a similar fashion. Closed-form solutions to the above expres-
shons are extremely difficult to obeain due to the double application of the
maximum operator, We must reson to simulations,*

Broadly speaking, the simulation procedure consists of: 1) generating
a path for the daily temperature process in (10 and (2) using the parame-
ters in table A and a set of daily forecasts for the simulation perod; 2)
tracking realised HDOYCDD values of each path; 3) calculating the payout
of the derivative in question; and 4} repeating steps one through three
many times and averaging the discounted payouts to obitain the desired
derivative value,

A key issue is the choice of inputs for the adjusted mean temperature,
¥ .- As mentioned earfier, in the estimation context, V., serves as the “an-
choring |$ml In the valuation contexi, which, necessarily, is forward-
looking, yer ©an maturally be considered as daily temperature forecasts.
The random term in the temperature dynamic will capture the uncertain-
ty in the forecasts. Indeed, this is one of the key advantages of our model,

i the: seasonal COD of the average

since it allows forecasts as inputs and is capable of sccommodating devi-
ations from forecasts commensurate with history, ie, data.

The simulation ermors can be reduced in many ways. For example, the
antithetic variable techrigque s readily applicable. In our framework, we
propose an additional emor reduction measure, which s simdlar 1o the con-
trl wariate technique, Motice that the fundamental variable in our frame-
work is the daily temperanure, and the underiying variable for most weather
derivatives is HDD/CDD, which are essentizlly non-linear functions of daily
temperatures. While our model will produce almost “unbiased” tempera-
ture forecasts in that the average temperature for a future point will be al-
mast equal to the input forecast, it cannot guarantes an unbiased forecast
for the HDDYCDD, or forward prices. To ensure comect pricing, a4 two-
stage simulation can be performed. In the first stage, we simulate foraand
plied forward price from the forecasts. Then, in the second stage, we sim-
ulate the derivative's prices whereby for each particular path, we adjust
the realised CDD or HDD by the difference obtained in the first stage, and
use the adjusted CDD or HOD 0 calculare the payour In a nstshell, the
above procedure amounts 1o ensuring unbiased paths of the CDD and
HDD, which are underlying variables for weather derivatives. It should be
pointed out that when the emperamre dynamic, espedially the voladliy
structure, is estimated perfecly, this procedure will not be necessary.

We implement the above procedures for HDDVCDD options by taking
January 1, 1999 as the valuation date and by assuming an annual risk-free
interest rate of 6%, We use two sets of forecasts, one being the historical
daily average temperature and the other being the adjusted mean tem-
peratire of 1998, The results are in tables B and C, which also repart the
so~called historical simulation prices. The historical simulation here uses
only the past realised seasonal HDD/CDD, in 2 way similar to historical
simulation in VAR calculations. Essentially, it estimates the average value
of the contract if it were written every year in the past years. In the insur-
ance industry, this method is referred o 25 “burn rate™ method,

We can see that the historical simulation approach generates very high
option values, compared with regular simulstions. For most cities, the CDD
option values based on historical simubations are more than twice the reg-
ular simulation values, prompting us o argue that the historical simulation,
& The key factor that detarminas the significanca of the mertet price of risk s the cor-
redation betwean the aggragala outpur of ihe econormy and 1hs lampseraiune vanabls,
Wehen thiz cormelation i nof vary high (say, iower than (.2), then tha market prios of
#kmm.mmhm'ﬁmmm
of the markel price of risk tendss o incresse &3 investors becoma mon risk-averse
# For most OTC HOD or GO0 contracts, the payout of, say, a call option, i capped
ot i cortain vl This in no way poses sxdre dficully when simulstions ane used. For
smpliclly. we ignore payout caps in the numencsl lustrations
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C. Option prices for an HDD season

Historical simulation

Strike Option

price value

Atlanta Call 241947 108.78
Fut 106.78

Chicago Call 5.114.37 144 23
Fut 144.23

Dallas Call 217321 G040
Put G040

Hew York Call 3,859.83 105.53
Pui ¥5.53

Philadelphia Call 3,901.00 T08.67
Put 109.67

Regular simulation

Forecast A Forecast B
Strike Option Strike Option
price value price value

239695 BiL44 2.716.85 Bg.32
68.74 BO.65
5., 126.15 74945 4 50600 74.88
75.58 75.43
214105 7347 219208 73.20
7344 73.57
388235 L 341725 5503
56.44 56.35
388975 61.14 3,404.08 6103
61.62 61.45

MNote: under “historical simulation”, wi assumd thal the fulure will mirmic histery exaclly according to the sample data. The &inke prices are tha hisfonca
average HODs. Under “simulation forecast A%, the simulaton is based on (1), (2) and table &, and the lomecast is the historical average wemperalure, The
sinke prica 15 the seasanal HOD of the averages. Under “simulation forecast B°, the simulation is based on (1), (2) and 1able A, and the forecast is the
adjusted average lemparature. The sinke prica is the seasonal HOD of the average. When forecasts are adjusted average temperature, we use November

and December 1997 and the first three months of 1998

or burn rate method, should be avoided for weather derivatives valuations.
The main reason thal this method is likely to fail is s implicit assumption
that owver the contract period (say, next HDD season), the entire season coubd
e as cold as the coldest season or as warm a5 the warmest season in the
past. But, in reality, in a forecasting context, we would not attach equal prob-
abilities to the rwo extremes, After all, a typical long run forecast would in-
dicate whether the next season is above, below or around normal. A forecast
that attaches equal probabilities to all lkelihoods is hardly a forecast!

Discussions and conclusions

We propose and implement a theoretically intuitive and empirically ap-
pealing framework for weather derivatives valuations, The proposed tem-
perature system nol only allows easy estimation, but also incorporates key
features of the daily lemperamure behaviour such as seasonal cycles and
uneven variations throughout the year,

Cur valuation framework has many advantages. [t allows the use of
weather forecasts in modelling the future temperature behaviour. Tn addi-
tion, since our staning podnt is the daily emperatune, the framewoark is ca-
pable of handling wemperature contracts of any maturity, for any season,
and it requires only a one-time estimation. In contrast, if one starts by meod-
elling CDI or HDD directly, then by nature of the temperanre hehaviour,
the CDD or HOD will necessarily be season and maturity specific, which
implies that each contract will require 3 separate estimation procedure,
This will not only create potential inconsistency in pricing, but also ren-
der the whole idea impractical if many different contracts are dealt with
or if the valuation is 10 be ongoing.

We show that the historical simulstion approach or bumn rate method is
lasgety invalid in estimating weather dervative values, Weather contracts
typically cover a perind due soon and do not extend very far into the fu-
ture, However, historical simukations implicitly assume that the next sea-
son's lEmpersture can resemble any of the past seasons in the sample,
Including extreme seasons (e, very cold or very warm). As a result, in most
cases, the historical simulation method tends o overestimate option prices.

We would like o issue two caveats before closing. First, our model
takes as inpuls the daily temperature forecasts. Irrespective of the massive
computing power endowed by today's technology, even the most sophis-
ticated forecasting systems cannot produce Jong-ren forecasts to dadly pre-
cisions. For example, as pointed out by a referes, the US National Weather
prowides, among othes forecasts, three-month forecasts for periods up to
one year. Those forecasts only address the seasonal level as opposed o
daily lewel. In the absence of authoritative long-run forecasts, the choices

of forecast inputs becomes an an rather than science. But this is precise-
Iy what drives the market. When perfiect forecasts are available, thene will
be no weather derivatives markets! A corollary of the above ohsenvation
is that, unlike with financial derivathves pricing, even if all participants agree
on the model structure, lange bid-ask spreads for weather derivatives cn
still exist simply due to different assessments of the unknown weather,
Second, we do not claim perfection and universality of cur model. We
consider our efforts as the first step in-structuring ideas nto quantitative
methods, By almost any measurenent, this field is stll in its mfancy. We
hope that our inittal effons will stmukate more research into the topic, so
that a near-perfect model will eventually emerge. B 3

Melanie Cas Iz senlor director in the research department at the
Chicagoe Mercantile Exchange and assistant professor in the de-
partment of economics at Queen's University, Ontario. Jason Wai
is iate prof in the division of management at the Urii=
wversity of Toronto at Scarborough. We are grateful to the Social Sei-
ences and Humanities Research Council of Canada for financial
support. We respectively alse acknowledge Quoen's Edith Whyta
research grant and the University of Toronto Connaught Fund. The
analysis and conclusions of this paper are these of the authors and
do not indicate concurrence by the Chicago Mercantile Exchange
Commants on this arficle can be posted o e lectmical discussion om

on the Risk Web site ar hitp:fwww, riskpubiications. comyrisk

REFERENCES

Cao M and J Wei, 1995

Pricing weather gervalives: ar equifbrilm soproach
Working papér, Cuiisn's Linbersity and Univérsity of Tooodlba
Challiz &, 1909

Bright fonecast for profis

Ragctions, Juné

Dischel B, 1998

Bipck-Sohnies won T oo

Risk Waather Risk Special Report, pages B9
Diachel B, 10993

Shrping hiskony

Résk Waathar Rish Soecls Reporl. papes 13-15
Hanley M, 1989

Heuging the fvos of nelire

Risk Professione! 1, Jly—August, pages 21-25
Hunter A, 1090

Managng mather mature

Derswatives Stretegy, Fabruary

TO = RISK - MAY 2000



