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1. Introduction

The history of weather derivatives dates back to the mid 90�s, when deregulation of the energy and

utility industries started in the U.S.. Faced with growing competition and uncertainty in demand,

energy and utility companies sought for effective hedging tools to stabilize earnings. As monopolies

gave way to competitive wholesale markets, hedging price alone was no longer adequate since the

volumetric risk also came into play.

In the deregulated environment, energy merchants quickly realized that weather conditions were

the main source of revenue uncertainties. Weather affects both short-term demand and long-term

supply of energy. For instance, as shown in Figure 1, the electricity load depends heavily on the

temperature level. Similarly in Figure 2, regressing the monthly delivery of natural gas against

the monthly average temperature for the state of Illinois, we obtain an R2 of 0.9416. Therefore,

short-term demand of power and energy is largely dictated by weather conditions. A particular

weather pattern (e.g., a strong global warming trend) can also affect the long-term supply as energy

producers re-adjust their production levels.

The close association between the short-term demand for energy and weather conditions created

a natural impetus for the development of weather derivatives. Although deals were struck as early

as 1996, the Þrst publicized deal was signed in 1997 between Koch Energy and Enron (now a

defunct company) on a temperature index for Milwaukee, Wisconsin for the winter of 1997-1998.

Since then, additional transactions were executed in different regions among many more players.

As shown in Figure 3, the number of contracts (per year) in over-the-counter (OTC) markets

has been increasing steadily.1 For the year 2001 alone, almost 4,000 contracts were struck. The

1Figures 3 through 7 are based on surveys conducted by PricewaterhouseCoopers (http://www.pwcglobal.com)
on behalf of Weather Risk Management Assocaition (http://www.wrma.org).
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notional value of the market grew in tandem with the volume, as shown in Figure 4. By 2001, the

overall market size had grown to more than $4 billion. As far as contract type is concerned, Figure 5

shows that, about 60% of the deals were on heating degree days (HDDs) and about 30% on cooling

degree days (CDDs). For any given year, more than 80% of the contracts were on temperature

variables. Moving on to notional value by contract type, we see in Figure 6 that temperature

derivatives again dominated the market, accounting for more than 90% of the total value in any

given year. Finally, the geographic distribution of the weather derivatives market is by no means

uniform. Figure 7 indicates that the vast majority of the contracts were for the North American

region, with Europe and Asia trailing behind at a decent growth rate. Within North America, the

east and Midwest regions saw most of the deals, mainly due to the larger temperature variations

in these regions.

The rapid growth of the OTC markets propelled the growth of organized markets. In September

1999, the CME began listing futures and options on temperature indices of 10 U.S. cities (Atlanta,

Chicago, Cincinnati, New York, Dallas, Philadelphia, Portland, Tucson, Des Moines and Las Ve-

gas). The 10 cities were chosen based on population, the variability in their seasonal temperatures

and the activities seen in OTC markets. Dealers specializing in HDD / CDD swaps and options

need a liquid market to lay off their risk, and the standardized CME contracts are the perfect

vehicle for this purpose. The active OTC markets and the appointment of a market maker 2 helped

to boost the trading volume on the CME. The total number of contracts traded was 4,165 in 2002

and 14,234 in 2003.

Weather conditions affect not only the energy and utility sectors, but also many other sectors

such as agriculture, retail, entertainment, and tourism. In fact, nearly twenty percent of the U.S.

economy is directly affected by weather (see Challis [1999] and Hanley [1999]). As long as an

2In May 2002, Wolverine Trading, L.P. was named as the Lead Market Maker in CME�s weather futures contracts.
Wolverine posts continuous bids and offers each day to ensure the liquidity of the market.

2



enterprise�s fortune is subject to the mercy of mother nature, weather risk will be a crucial part of

the overall risk to manage. Weather derivatives therefore play an important role in the endeavour

of integrated risk management.

Still unrecognized by the investment community is the broader role of weather derivatives in

portfolio management. From the perspective of Markowitz mean-variance efficiency, as long as

the market is not complete, a new asset class will always improve the risk-return trade-off. The

relatively lower correlation between weather derivatives and conventional Þnancial assets suggests

that weather derivatives can be an excellent diversiÞcation vehicle.

In the remainder of the article, we Þrst describe the main weather derivative products and their

usage in managing various weather risks; we then provide an overview of the modelling and pricing

issues; and Þnally, we demonstrate the role of weather derivatives in portfolio management.

2. Product Descriptions

Although deals have been struck on such underlying variables as temperature, rainfall, snowfall

and humidity, the vast majority of contracts are on temperature. The two most popular contract

variables are the heating degree day (HDD) and cooling degree day (CDD). A degree day mea-

sures how much a day�s average temperature deviates from 65◦F (or 18.33◦C), a level of indoor

temperature deemed to be comfortable by the utility industry. It is assumed that for each degree

below 65◦F, more energy is needed to heat the room and for each degree above 65◦F, more energy

is needed to power the air conditioners. Therefore HDD / CDD measure the coldness / warmth of

the temperature. Precisely speaking, daily HDD = max[0, 65◦F − daily average temperature] and

daily CDD = max[0, daily average temperature − 65◦F], where �daily average temperature� is the

average of the maximum and minimum temperatures of the day.

Most contracts are written on the accumulation of HDDs or CDDs over a calendar month or a
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season so that one contract can hedge against revenue ßuctuations over the concerned period. For

instance, at the CME, all contracts are for monthly cumulative HDDs or CDDs.

In some cases, �energy degree day� (EDD) is used in lieu of HDD or CDD. EDDs are the

absolute deviation from a benchmark temperature which can be different from 65◦F. When the

benchmark temperature is 65◦F, EDDs are simply the sum of HDDs and CDDs. EDDs can help

manage the temperature risk not just for a season but for the whole year. Table 1 contains an

example of calculating the daily and cumulative HDDs, CDDs and EDDs.

Broadly speaking, there are three types of temperature derivatives: futures / forward, swaps,

and options. Besides the underlying variable HDD or CDD, a contract must specify such basic

elements as the accumulation period, the index station which records temperatures used to construct

the underlying variable, and the tick size, i.e., the dollar amount attached to each HDD or CDD.

The following contains examples of HDD- and CDD-based forward and option contracts.

HDD Forward CDD Put Option
Current time December 1, 2001 January 1, 2002
Location Phil. Int�l Airport, Philadelphia HartsÞeld Airport, Atlanta
Long Position ABC Bank Air Conditioning Ltd.
Short Position Power Supply Ltd. XYZ Bank
Accumulation
Period

February, 2002 July, 2002

Tick Size $4,000 per HDD $10,000 per CDD
Settlement Level 850 HDDs
Strike Level 550 CDDs
Actual Level 650 HDDs 510 CDDs
Payoffs at Maturity
(Long Position)

(650− 850)× 4000 = −$800, 000 (550− 510)× 10000 = $400, 000

In the HDD forward example, Power Supply Ltd. agreed to short the cumulative HDDs for

the month of February using the Philadelphia International Airport as the index station. The

settlement level was 850 HDDs. The tick size was set at $4,000 per HDD, which measures the

sensitivity of Power Supply�s revenue with respect to changes in the HDD level. With a realization

4



of 650 HDDs, ABC Bank paid Power Supply Ltd. $800,000 to settle the contract.

The CDD put option works in a similar fashion. A cap or maximum payoff is typically speciÞed

for an option contract. For instance, the payoff function for a CDD put option with a cap would

be speciÞed as, min[cap, tick×max(0, strike − CDD)]. In our example, had a cap of $350,000 been

speciÞed, the settlement payoff would have been $350,000.

3. Illustrations of Weather Risk Management

As any other derivative securities, weather derivatives serve the ultimate purpose of risk transfer.

Power and utility companies are interested in smoothing their earnings by engaging in price and

volumetric hedges. Insurance companies, power / energy brokers, and brokerage Þrms are in a

position to act as counterparties thanks to their ability to effectively pool the weather risk and

eventually lay it off in the organized market such as the CME. Of course, they earn a fee or a

mark-up in the process. Below, we show two Þctitious examples of using weather derivatives to

manage weather risk.

Example 1: Natural Gas / Electricity Companies. The high correlation between power

/ energy consumptions and temperatures, as evident in Figures 1 and 2, means that the volumetric

risk can be effectively hedged with weather derivatives. Let us examine the following.

Situation: Windy Powers Inc. is a power company supplying electricity to a community in the

Chicago area. It is now December 1, 2003, and the company is making plans to hedge the weather

risk for the period of January 1, 2004 through March 31, 2004. The company has performed

statistical analyses and found the following: the average electricity price for the Þrst three months of

the year is around $25 / MWh and the total sales volume is about 800,000 MWh; the average three-

month cumulative HDD is around 3,000 HDDs; for each unit decrease in HDDs the total revenue

drops by about $8,000. The company would like to neutralize the volumetric risk completely.
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Solution: Windy Powers Inc. enters into a forward contract with KDV Corp. (an energy

broker) to short the three-month cumulative HDDs with a settlement level of 3,000 HDDs. The

chosen station is the O�Hara Airport. The tick size is the revenue sensitivity, i.e., $8,000. Since

the settlement level is the historical average, the contract has an initial value of zero. When the

contract is settled on March 31, 2004, Windy Powers�s revenue will be maintained at the desired

level, regardless of the realized HDDs for the season, as shown below.

Realized
HDDs

Gross
Revenue (000s)

Gain / Loss from
Contract (000s)

Net
Revenue (000s)

3,400 $23,200 -$3,200 $20,000
3,200 $21,600 -$1,600 $20,000
3,000 $20,000 $0 $20,000
2,800 $18,400 $1,600 $20,000
2,600 $16,800 $3,200 $20,000

If Windy Power Ltd. wishes to eliminate the downside volumetric risk while retain the upside

potential, it could purchase a put option on the three-month cumulative HDDs. The strike price

should be set at 3,000 HDDs, and the tick size at $8,000. Of course, the company will incur an

up-front cost to acquire such an option.

Example 2: Entertainment, Restaurants and Bars. People tend to go out more when

the weather is nice. While the long-run fortune of an entertainment establishment or a restaurant

depends on many factors such as the state of the economy, management skills, and service quality,

the short-run business level could depend heavily on weather conditions. This is especially so for

bars and night clubs. The following is based on a deal reported by The Times (April 16, 2001).3

Situation: Timthy�s is a chain of wine bars in London. Years of observations indicate that

business tends to peak on Thursdays and Fridays when workers start to wind down for the week.

3The Times reported that Corney & Barrow, a chain of London wine bars struck a deal which allowed them to
receive a payout of up to $15,000 on every Thursday and Friday in the summer season when the temperature failed to
reach 24◦C. Speedwell Weather Derivatives, a UK based weather consultancy and software company, helped perform
the statistical anaylsis and arrange the deal.
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Additionally, it notices that the volume of customers drops precipitantly when the summer temper-

ature is below a certain level. After a few years of tabulation of the daily temperature and customer

volume, Timthy�s concludes that 22◦C seems to be the temperature threshold below which business

starts to suffer. Compared with regular warmer days, cooler Thursdays or Fridays on average cost

the chain about $10,000 per day in revenues. It is now March 1, 2003 and the wine bar chain would

like to hedge against unfavorable temperatures for the coming summer.

Solution: Timthy�s strikes a deal with Exxanron (a dealer of weather derivatives) based on

the temperature of �critical days� throughout the summer (from June 15, 2003 to September 15,

2003). The �critical days� are Thursday and Friday of each week. On each critical day, if the

temperature fails to reach 22◦C, Exxanron will pay Timthy�s $10,000. To cover itself for extreme

events (e.g., cooler than normal temperatures for the whole summer), Exxanron caps the total

payout at $150,000. To acquire the weather hedge, Timthy�s pays Exxanron a one-time �insurance

fee� of $20,000. This fee is the fair value of the contract which is calculated through sophisticated

meteorological analysis. In particular, it results from an overall estimate of the probability that

the temperature will be below 22◦C on each critical day. This probability is assessed to be around

10%. Since there are 24 critical days in the period of June 15, 2003 to September 15, 2003, the total

expected payoff is therefore 24× 10, 000× 10% =$24,000. The actual fee is $4,000 less, reßecting

the cap of total payoff at $150,000.

4. Overview of Temperature Modeling and Derivatives Valuation

The valuation of temperature derivatives has some unique features. To start with, the underlying

is a meteorological variable rather than a traded asset. The conventional risk-neutral, arbitrage

valuation does not apply. In addition, being a meteorological variable, temperature follows a

predictable trend, especially over a longer horizon. The unique nature of the temperature variable
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brings about two important issues: accurate modeling of the underlying and the assessment of the

market price of risk.

The academic literature only begins to make progress in valuing this new class of derivative

securities (see, e.g., Cao and Wei [2003]). In the industry, regardless of the valuation methodologies,

a mark-up is usually attached to the model price as a cushion for errors. From the modeling per-

spective, the existing valuation methods can be loosely classiÞed into three categories: 1) insurance

or actuarial valuation, 2) historical burn analysis, and 3) valuation based on dynamic models.

Insurance or Actuarial Method. This method is widely used by insurance companies, and

its backbone is statistical analysis based on historical data. A probabilistic assessment is attached

to the insured event and a fair premium is calculated accordingly. In the case of weather derivatives,

this method is less applicable for most contracts since the underlying variables (e.g., temperature)

tend to follow a recurrent, predictable pattern. Nonetheless, if the contract is written on rare

weather events such as extreme heat or coldness, then this method will be very useful. In fact, one

may even argue that this is the only appropriate method in this case. For instance, using a diffusion

process to model the temperature will be misguided if the main interest is in extreme events.

Historical Burn Analysis. This method is perhaps the simplest to implement, and as a

result, is most prone to large pricing errors. In a nutshell, this method evaluates the contract

against historical data and takes the average of realized payoffs as the fair value estimate (see

Dischel [1999] for further discussions). The key assumption is that, the past always reßects the

future on average. This is a strong requirement in most cases. To appreciate this point, we apply

the historical burn analysis to call options written on the three-month (January, February and

March) cumulative HDDs for Atlanta and New York.4 Table 2 contains the calculations. We

Þrst calculate the realized cumulative HDDs for each year, and then evaluate the option�s payoff

4The historical daily temperatures are obtained from the National Climate Data Center.
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accordingly (the exercise prices are set at 1,500 and 2,500 for Atlanta and New York, respectively).

These are reported in the four columns next to the Þrst column. The last two columns show the

option value estimates under different sample lengths. Take Atlanta as an example. When we use

all 20 historical observations, the average payoff is 92.15; when the most recent 19 observations

are used, the average payoff is 82.37; .....; when we use only the recent 10 observations, the fair

value estimate is 22.50. Going back 10 years versus 20 years would lead to a difference of more

than 300% in value estimates! Although the estimates for the option on New York�s HDDs have a

smaller dispersion, the highest estimate is still 70% higher than the lowest estimate.

It is not true that a longer time series will always enhance valuation accuracy. Although more

data will cover more temperature variations, the future temperature behavior, which drives the

derivative security�s value, may be quite different from history. This is especially important when

the derivative security�s maturity is short. Ultimately, it boils down to a trade-off between statistical

power and representativeness. The commonly accepted sample length in the industry appears to

be between 20 and 30 years.

Similar to the insurance or actuarial method, historical burn analysis is incapable of accounting

for the market price of risk associated with the temperature variable. These methods are only

useful from the perspective of a single dealer. We need a dynamic and forward looking model to

establish a unique market price which incorporates a risk premium.

Dynamic Valuation Models. In contrast to previous methods, a dynamic model directly

simulates the future behavior of temperature as a continuous or discrete stochastic process. The

continuous process usually takes the following mean-reversion form,

dY (t) = β [θ(t)− Y (t)] dt+ σ(t)dz(t), (4.1)

where Y (t) is the current temperature, θ(t) is the deterministic long-run level of the temperature,

β is the speed at which the instantaneous temperature reverts to the long-run level θ(t), σ(t) is the
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volatility which is season-dependent, and z(t) is a Wiener process which models the temperature�s

random innovations (see Dischel [1998] and Brody, Syroke and Zervos [2002] for similar speciÞ-

cations). The process in (4.1) needs to be discretized in order to estimate β and the parameters

imbedded in θ(t) and σ(t). The functional forms for θ(t) and σ(t) can be speciÞed based on careful

statistical analyses. Once the process in (4.1) is estimated, one can then value any contingent claim

by taking expectation of the discounted future payoff.

The above continuous setup usually does not admit closed-form valuation formulas. Addition-

ally, a risk-neutral valuation is imposed without any theoretical justiÞcation, and the market price

of risk is rendered irrelevant. Moreover, the process in (4.1) can not reßect the persistent serial

correlations typically present in daily temperatures.

With the above in mind, researchers (e.g., Cao and Wei [2000], Diebold and Campbell [2002],

and Cao and Wei [2003]) have proposed discrete processes. In addition, Cao and Wei [2003] weave

the temperature uncertainty and the economy�s aggregate output into an equilibrium framework.

Motivated by the signiÞcant inßuence of weather on the overall economy, Cao and Wei [2003]

propose a serially correlated bivariate-process for the temperature and the aggregate output, and

address the market price of weather risk therein.

The temperature process proposed by Cao and Wei [2003] possesses the following features, all

of which are based on their careful study of the temperature behavior for U.S. cities: 1) the daily

temperature has two components, the Þrst being the seasonal pattern plus a global warming trend

and the second being a random innovation, 2) the innovation is serially correlated, and 3) the

standard deviation of the innovation is higher in the winter and lower in the summer, captured by

a sine wave function. The aggregate output follows a mean-reverting process which is correlated

with the current and past temperature innovations. The last building block is the representative

agent�s preference, which Cao and Wei [2003] specify as constant relative risk aversion (CRRA).
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Given the temperature risk embedded in the aggregate output, the risk aversion determines the

risk premium via equilibrium valuations.

The market price of risk associated with the temperature variable is found to be signiÞcant in

most cases. Risk premium can represent a signiÞcant portion of the derivative�s value. Using the

risk-free rate to discount the expected payoff will lead to a sizeable error. It is also found that the

market price of risk affects option values much more than forward prices. This result is mainly due

to the non-linearity in option�s payoffs. Intuitively, the market price of risk tends to be integrated

out in the linear payoffs of forward contracts.

In sum, there are several valuation methods for temperature derivatives. The ultimate choice

depends on the trade-off between simplicity and accuracy.

5. Asset Allocation and Weather Derivatives

The role of weather derivatives in asset allocation and portfolio management is largely unexplored in

the literature. Purely from a diversiÞcation perspective, this new class of Þnancial instruments may

indeed hold some potential. To gain some insight, we now examine the efficient frontiers consisting

of the following asset classes: equity, Þxed income, commodities, and temperature instruments.

Three indices are included in the equity class, namely, the regional indices for North America,

Europe, and PaciÞc. The Þxed income class is represented by the JP Morgan Bond Index. The

asset class of commodities is represented by the Goldman Sachs Commodity Index which covers

industrial metals, precious metals, live stocks, agriculture and energy. All of the above indices are

retrieved from Datastream. For the weather investment class, we construct a hypothetical index

using New York City�s historical temperatures. The index is the 30-day lead daily EDD residual

which is constructed by subtracting the historical average EDDs from that day�s realized EDDs.

For instance, if the historical average EDDs for January 1 is 27 and the realized EDDs for January
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1, 2001 and January 1, 2002 are 24.5 and 30.6 respectively, then the two residuals will be −2.5

and 3.6. To avoid negative index level (for the purpose of calculating returns) and to scale the

variance of the return series, we add 1,000 to the EDD residual to arrive at the temperature index.

The 30-day lead is used to rule out predictability.5 Finally, all the time series are for the period of

January 1, 1991 to December 31, 2002 with daily frequency.

Table 3 presents the annualized means, standard deviations, and the correlation matrix for

the six indices. The North American market fared the best in terms of annualized average returns

(8.61%), followed by the European market (4.80%). The PaciÞc market saw an average loss of

2.23%. It also exhibited the largest standard deviation. The bond index produced a modest

gain (1.26%), while both the commodity and the temperature indices experienced a minor loss

(−0.27% and −0.02%). As for correlations, the equity indices exhibit relatively larger correlations

among themselves. The highest correlation, 0.3815, is between the North American market and

the European market.6 By and large, the correlation of temperature index with other indices is

close to zero, suggesting potentials for diversiÞcation.

Figure 8 presents efficient frontiers constructed using the above data. To see how much each

asset class can contribute to overall diversiÞcations in addition to equities, we start with the three

equity indices and add one index at a time. It is seen that adding the Þxed-income asset class

lowers the minimum variance substantially, and improves the risk-return trade off for the higher

range of standard deviations. As a matter of fact, adding the commodity or temperature asset

class to the three equity indices lead to similar results. Now, once the bond index is included,

introducing the commodity index does not lead to noticeable improvements in risk-return trade-

offs. However, including the temperature index over and above all other indices does lead to a

5It is well known that the current technology can not produce reliable and accurate daily temperature forecasts
beyond 10 days into the future.

6The correlation is higher if the indices are measured in local currencies. Here, the Europe and PaciÞc indices are
measured in U.S. dollars since we take the perspective of a U.S. investor.
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visible improvement, especially in the higher range of the standard deviation. For instance, at a

portfolio standard deviation of 0.3, the expected return improves by about 40 basis points after

adding the temperature index; the improvement is about 60 basis points for a standard deviation

of 0.4. We can therefore conclude that weather derivatives, as an alternative class of Þnancial

instruments, do hold potential in asset allocation and portfolio management.

6. Summary

This article offers a brief survey of this emerging market. The structure and usage of various weather

derivative products are surveyed, and the modeling and pricing issues are discussed. The literature

on weather derivatives valuation is still in its infancy, and much more research needs to be done to

accurately model weather variables. The article also demonstrates the role of weather derivatives

in portfolio management. As an alternative class of Þnancial instruments, weather derivatives can

improve the risk-return trade-off in asset allocation decisions.
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Figure 1: Electricity Consumption Versus Temperature

Maximum Power Load vs. Temperature for New England Power Pool 
(Jan. 1, 2001 - Dec. 31, 2002) 

10000

15000

20000

25000

30000

10 20 30 40 50 60 70 80 90 100

Average Daily Temperature (F)

D
ai

ly
 M

ax
im

um
 L

oa
d 

(M
W

h)

actual load

fitted load

Figure 2: Natural Gas Consumption Versus Tempature

Monthly Gas Delivery vs Temperature for Illinois Residential  (Jan. 89 - Nov. 02)  
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Figure 3: Size of Market by Number of Contract
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Figure 4: Size of Market by Notional Value
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Figure 5: Number of Contracts by Type
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Figure 6: Notional Value by Type
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Figure 7: Regional Distribution of Market

Number of Contracts by Region, 1998 - 2001
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Figure 8: Efficient Frontiers Based on Difffernt Index Sets
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Table 1: HDDs, CDDs and EDDs for June 6 - June 17, 2002 at LaGuardia International Airport,

Daily Daily Daily Daily Cumulative Daily Cumulative Daily
Day Maximum Minimum Average HDDs HDDs CDDs CDDs EDDs

June 6 77 59 68.0 0.0 0.0 3.0 3.0 3.0

June 7 69 57 63.0 2.0 2.0 0.0 3.0 2.0

June 8 69 55 62.0 3.0 5.0 0.0 3.0 3.0

June 9 85 57 71.0 0.0 5.0 6.0 9.0 6.0

June 10 78 65 71.5 0.0 5.0 6.5 15.5 6.5

June 11 92 64 78.0 0.0 5.0 13.0 28.5 13.0

June 12 90 60 75.0 0.0 5.0 10.0 38.5 10.0

June 13 66 57 61.5 3.5 8.5 0.0 38.5 3.5

June 14 61 56 58.5 6.5 15.0 0.0 38.5 6.5

June 15 63 55 59.0 6.0 21.0 0.0 38.5 6.0

June 16 79 61 70.0 0.0 21.0 5.0 43.5 5.0

June 17 78 63 70.5 0.0 21.0 5.5 49.0 5.5



Table 2: Historical Burn Analysis for HDD Call Options

HDDs Call Option Payoff Years in Call Value Estimate
Year Atlanta New York Atlanta New York Average Atlanta New York
1979 1778 2841 278 341
1980 1672 2702 172 202
1981 1698 2708 198 208
1982 1587 2791 87 291
1983 1749 2443 249 0
1984 1660 2724 160 224
1985 1723 2567 223 67
1986 1416 2533 0 33
1987 1602 2504 102 4
1988 1649 2593 149 93 10 22.50 69.60
1989 1242 2417 0 0 11 34.00 71.73
1990 1009 2078 0 0 12 39.67 66.08
1991 1354 2217 0 0 13 36.62 63.54
1992 1325 2439 0 0 14 49.93 63.79
1993 1514 2667 14 167 15 57.27 74.47
1994 1410 2921 0 421 16 69.25 69.81
1995 1295 2370 0 0 17 70.29 82.82
1996 1666 2608 166 108 18 77.39 89.78
1997 1102 2377 0 0 19 82.37 95.68
1998 1545 2060 45 0 20 92.15 107.95

Highest 92.15 107.95
Lowest 22.50 63.54

Highest / Lowest 4.10 1.70

Note: The HDD call is for the period of January 1 - March 31, 1999. The two columns next
to the year column contain the actual realized HDDs for Atlanta and New York. The
following two columns contain the payoffs of the calls with exercise prices of 1,500
and 2,500 respectively for Atlanta and New York. The last two columns contain the
call option estimates based on different lengths of the sample period. We count the
number of years backwards from 1998. For example, a sample of 17 years covers
the period of 1982 - 1998, a sample of 16 years covers the period of 1983 - 1998,
and so on.



Table 3: Mean, Standard Deviation, Correlation Matrix

     Correlations Mean Std

N. America Europe Pacific Bond Commodity Temp.

N. America 1.0000 0.0861 0.1612

Europe 0.3815 1.0000 0.0480 0.1508

Pacific 0.1043 0.3456 1.0000 -0.0223 0.1847

Bond 0.0014 -0.0121 -0.0523 1.0000 0.0126 0.0437

Commodity -0.0103 -0.0277 0.0220 -0.0755 1.0000 -0.0027 0.1742

Temp. 0.0192 -0.0118 -0.0202 -0.0078 -0.0076 1.0000 -0.0002 0.0958

Note: there are six index series: equity indices for North America, Europe and PaciÞc,
JP Morgan Bond Index based on U.S. government bonds, Goldman Sachs
Commodity Index, and the Temperature Index. The Temperature Index is for New
York city, constructed as 1,000 plus the deviation of daily EDDs from the seasonal
average EDDs. The sample period is from January 1, 1991 to December 31, 2002
with daily frequency. The mean and standard deviation (Std) for each index are
annualized from their daily counterparts.


