
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why A Stock Valuation Model?

■ Market is unlikely to be fully efficient all the time

- Need a metric for "fair price (F)" of each stock that can differ from market price (MP)
- Trading Signal
- F > MP
- $F<M P$
- $F=M P$ \qquad

Common Stock Cash Flows and the Fundamental Theory of Valuation
In 1938, John Burr Williams postulated what has become the fundamental theory of valuation:
The value of any financial asset equals the present value of all of its future cash flows.

- For common stocks, this implies the following
$P_{0}=\frac{D_{1}}{(1+r)^{1}}+\frac{P_{1}}{(1+r)^{1}} \quad$ and $\quad P_{1}=\frac{D_{2}}{(1+r)^{1}}+\frac{P_{2}}{(1+r)^{1}}$
substituting for P_{1} gives
$P_{0}=\frac{D_{1}}{(1+r)^{1}}+\frac{D_{2}}{(1+r)^{2}}+\frac{P_{2}}{(1+r)^{2}}$
$P_{0}=\frac{D_{1}}{(1+r)^{1}}+\frac{D_{2}}{(1+r)^{2}}+\frac{D_{3}}{(1+r)^{3}}+\frac{D_{4}}{(1+r)^{4}}+\cdots$

Dividend Discount Models (DDM)

$$
V_{o}=\sum_{t=1}^{\infty} \frac{D_{t}}{(1+r)^{t}}
$$

- $\mathrm{V}_{0}=$ Value of Stock \qquad
- $D_{t}=$ Dividend
- r = required return, or discount rate
\qquad
\qquad
\qquad

$$
V_{o}=\frac{D}{r}
$$

- Stocks that have earnings and dividends that are expected to remain constant (perpetuity)
- Preferred Stock
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
V_{o}=\frac{D}{r}
$$

$\mathrm{D}=\$ 5.00$
$\mathrm{r}=.15$
$\mathrm{v}_{0}=$
$\mathrm{v}_{1}=$
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad

\qquad
\qquad

\qquad

- For many firms (especially those in new or high-tech industries), dividends are low and expected to grow rapidly. As product markets mature, dividends are then expected to slow to some "steady state" rate. How should stocks such as these be valued?
- Answer: We return to the fundamental theory of value - the value oday equals the present value of all future cash flows
- Put another way, the nonconstant growth model suggests that
$P_{0}=$ present value of dividends in the nonconstant growth period(s) + present value of dividends in the "steady state" period.

Chapter 8 Quick Quiz -- Part 1 of 3

- Suppose a stock has just paid a $\$ 5$ per share dividend. The dividend is projected to grow at 5\% per year indefinitely. If the required return is 9%, then the price today is ? $\mathrm{P}_{0}=$

What will the price be in a year?
$P_{1}=$

- By what percentage does P_{1} exceed P_{0} ? Why?

Chapter 8 Quick Quiz -- Part 2 of 3

\qquad

- Find the required return:

Suppose a stock has just paid a $\$ 5$ per share dividend.
The dividend is projected to grow at 5% per year indefinitely.
If the stock sells today for $\$ 655 / 8$, what is the required return?
$P_{0}=D_{1} /(r-g)$
$(r-g)=D_{1} / P_{0}$
$r=D_{1} / P_{0}+g$
$=$
$=$ dividend yield (\quad) + capital gain yield (\quad)
\qquad
\qquad

Summary of Stock Valuation (Table 8.1)
I. The General Case

In general, the price today of a share of stock, P_{0}, is the present value of all its future dividends, $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \ldots$ \qquad
$P_{0}=\frac{D_{1}}{(1+r)^{1}}+\frac{D_{2}}{(1+r)^{2}}+\frac{D_{3}}{(1+r)^{3}}+\ldots$
where r is the required return. \qquad
II. Constant Growth Case

If the dividend grows at a steady rate, g, then the price can be written as:
$P_{0}=D_{1} /(r-g)$
This result is the dividend growth model.
III. The Required Return

The required return, r, can be written as the sum of two things:
$r=D_{1} / P_{0}+g$
where $\mathrm{D}_{1} / \mathrm{P}_{0}$ is the dividend yield and g is the capital gain yield.
\qquad
\qquad
\qquad
\qquad
\qquad

Stock Market Reporting

- Primary vs. secondary markets
- Growth opportunities
- Share price for a firm that pays in perpetuity all earnings as dividends but which has no growth opportunities P = EPS/r = Div/r \qquad
- Share price for the same firm with growth opportunities $P=E P S / r+N P V G O$
- We can relate this to the Price earnings ratio by dividing the \qquad equation by EPS: $P / E=1 / r+$ NPVGO/EPS

\qquad

Chapter 8 Quick Quiz -- Part 3 of 3

- Suppose a stock has just paid a $\$ 5$ per share dividend. The dividend is projected to grow at 10% for the next two years, the 8% for one year, and then 6% indefinitely. The required return is 12%. What is the stock's value?

Problem 8.1

- Green Mountain, Inc. just paid a dividend of $\$ 3.00$ per share on its stock. The dividends are expected to grow at a constant 5 percent per year indefinitely. If investors require a 12 percent return on MegaCapital stock, what is the current price? What will the price be in 3 years? In 15 years?

Problem 8.10
■ Metallica Bearings, Inc. is a young start-up company. No
dividends will be paid on the stock over the next 5 years.
The company will then begin paying a $\$ 6.00$ dividend, and
will increase the dividend by 5% per year thereafter. If the
required return on this stock is 23%, what is the current
share price?

\qquad
dividends will be paid on the stock over the next 5 years The company will then begin paying a $\$ 6.00$ dividend, and will increase the dividend by 5% per year thereafter. If the required return on this stock is 23%, what is the current share price?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bakshi-Chen-Dong (BCD) Stock Valuation Model \qquad

- A Generalization of DDM

Uses earnings per share (EPS) instead of dividends. \qquad Advantages:

- Introduces stochastic components to the model
- Combines \qquad

Continuous-time Finance

- The BCD model is derived in a Continuous-time framework - Assume trading time and business conditions (interest rate, earnings, etc.) are continuous. \qquad

Since trading is not continuous, we discretize business
\qquad variables in applications. \qquad
\qquad
\qquad
\qquad

Interest Rate \qquad
■ Stochastic interest rate: Vasicek (mean-reverting) process
$d R(t)=\kappa_{r}\left[\mu_{r}-R(t)\right] d t+\sigma_{r} d \omega_{r}(t)$

■ Stochastic pricing kernel -- No Arbitrage
\qquad
\qquad
\qquad
\qquad
\qquad

Earnings and Dividends

- Stochastic earnings: Earnings follow Geometric Brownian motion, with a mean-reverting growth rate.

$$
\begin{aligned}
\frac{d Y(t)}{Y(t)} & =G(t) d t+\sigma_{y} d \omega_{y}(t) \\
d G(t) & =\kappa\left[\mu_{g}-G(t)\right] d t+\sigma_{g} d \omega_{g}(t)
\end{aligned}
$$

- $d w_{y}$ and $d w_{g}$ are Brownian motions (stochastic components).
- Dividend assumed to be a proportion of earnings:
- Dividend $=\delta$ *EPS + noise
$D(t)=\delta Y(t)+e(t)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The BCD Model

- Following standard steps in asset pricing we arrive at a partial differential equation (PDE) for the stock price.
\qquad
- needs to be solved numerically.
- Estimating 11 parameters. How?
- Use 24 months of data to 'calibrate' the model. Effectively we are minimizing the error in the estimation period using previous 24 months market prices as a benchmark. The parameters capture a 'pricing rule' for each stock.
- Then we compute model price using 3 inputs (Interest rate, EPS0, EPS1)

\qquad
- Negative mispricing means
- Positive mispricing means \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What Makes a Good Model?
1. Zero average mispricing with small variance over time.
2. Fast mean-reversion of mispricing.
3. Mispricing should be significant predictor of future returns.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

