

Chapter 8

Stock Valuation (Homework: 4, 13, 21 & 23)

Models of Stock Valuation

- Balance Sheet Models
- Dividend Discount Models
- New Development

Review: Efficient Market Hypothesis

- Consider a "two-stock" market. If the market can distinguish good from bad, what will happen?
- Equilibrium -- No "good" or "bad" stocks. Current stock prices accurately reflect all available info (i.e. market is efficient)
- Equilibrium concept is everywhere

_			
-			
_			
_			
_			
_			
-			
_			
-			
_			

Why A Stock Valuation Model?

- Market is unlikely to be fully efficient all the time
- Need a metric for "fair price (F)" of each stock that can differ from market price (MP)
- Trading Signal
 - ◆ F > MP
 - ◆ F < MP</p>
 - ◆ F = MP

Common Stock Cash Flows and the Fundamental Theory of Valuation

In 1938, John Burr Williams postulated what has become the fundamental theory of valuation:

The value of *any* financial asset equals the present value of all of its future cash flows.

For common stocks, this implies the following:

$$P_0 = \frac{D_1}{(1+r)^1} + \frac{P_1}{(1+r)^1} \quad \text{and} \quad P_1 = \frac{D_2}{(1+r)^1} + \frac{P_2}{(1+r)^1}$$

$$= \frac{D_2}{(1+r)^1} + \frac{P_2}{(1+r)^1}$$

substituting for P₁ gives
$$P_0 = \frac{D_1}{(1+r)^1} + \frac{D_2}{(1+r)^2} + \frac{P_2}{(1+r)^2} \ .$$

$$P_0 = \ \frac{D_1}{(1+r)^1} \ + \ \frac{D_2}{(1+r)^2} \ + \ \frac{D_3}{(1+r)^3} \ + \ \frac{D_4}{(1+r)^4} \ + \ \dots$$

Dividend Discount Models (DDM)

$$V_o = \sum_{t=1}^{\infty} \frac{D_t}{\left(1+r\right)^t}$$

- V₀ = Value of Stock
- D_t = Dividend
- r = required return, or discount rate

Case 1: No Growth Model

$$V_o = \frac{D}{r}$$

- Stocks that have earnings and dividends that are expected to remain constant (perpetuity)
- Preferred Stock

No Growth Model: Example

$$V_o = \frac{D}{r}$$

D = \$5.00

r = .15

 $V_0 =$

V₁ =

Case 2: Constant Growth (Gordon Model)

$$Vo = \frac{D_o(1+g)}{r-g}$$

- g = constant perpetual growth rate
- What if g = 0 ?

Gordon Model: Example

$$Vo = \frac{D_o(1+g)}{r-g}$$

 $D_0 = 5.00

g = 8%

r = 15%

D₁ =

 $V_0 =$

	7
Common Stock Valuation - The Nonconstant Growth Case	
■ For many firms (especially those in new or high-tech industries),	
dividends are low and expected to grow rapidly. As product markets mature, dividends are then expected to slow to some "steady state" rate. How should stocks such as these be valued?	
Answer: We return to the fundamental theory of value - the value today equals the present value of all future cash flows.	
 Put another way, the nonconstant growth model suggests that 	
\mathbf{P}_0 = present value of dividends in the nonconstant growth period(s)	
+ present value of dividends in the "steady state" period.	
	٦
Chapter 8 Quick Quiz – Part 1 of 3	
 Suppose a stock has just paid a \$5 per share dividend. The dividend is projected to grow at 5% per year indefinitely. If the 	
required return is 9%, then the price today is? P ₀ =	
What will the price be in a year? P ₁ =	
- Poul de constant les Pousses Pousses	
■ By what percentage does P₁ exceed P₀? Why?	
	J
	٦
Chapter 8 Quick Quiz Part 2 of 3	
■ Find the required return:	
Suppose a stock has just paid a \$5 per share dividend. The dividend is projected to grow at 5% per year indefinitely.	
If the stock sells today for \$65 5/8, what is the required return? P₀ = D₁/(r - g)	
$(\mathbf{r} - \mathbf{g}) = \mathbf{D}_1/P_0$ $\mathbf{r} = \mathbf{D}_1/P_0 + \mathbf{g}$	
= dividend yield () + capital gain yield ()	
=	
	J

Summary of Stock Valuation (Table 8.1)

I. The General Case

In general, the price today of a share of stock, P_o is the present value of all its future dividends, D_1 , D_2 , D_3 , . . .

$$P_0 = \frac{D_1}{(1+r)^1} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \dots$$

where r is the required return.

II. Constant Growth Case

If the dividend grows at a steady rate, \mathbf{g} , then the price can be written as:

 $P_0 = D_1/(r-g)$

This result is the dividend growth model.

III. The Required Return

The required return, r, can be written as the sum of two things:

 $r = D_1/P_0 + g$

where D₁/P₀ is the *dividend yield* and g is the *capital gain yield*.

Stock Market Reporting

- Primary vs. secondary markets
- Growth opportunities
 - Share price for a firm that pays in perpetuity all earnings as dividends but which has no growth opportunities P = EPS/r = Div/r
 - Share price for the same firm with growth opportunities
 - P = EPS/r + NPVGO

 We can relate this to the Price earnings ratio by dividing the equation by EPS:

P/E = 1/r + NPVGO/EPS

Sample Stock Quotation from The Financial Post

The Financial Post, June 17, 1998, p.32 Toronto Quotations as of June 16, 1998

Source: Reprinted by permission of *The Financial Post*,, June 17, 1998, p.32.

Chapter 8 Quick Quiz Part 3 of 3	
■ Suppose a stock has just paid a \$5 per share dividend. The	
dividend is projected to grow at 10% for the next two years, the 8% for one year, and then 6% indefinitely. The required return is 12%. What is the stock's value?	
Problem 8.1 ■ Green Mountain, Inc. just paid a dividend of \$3.00 per	
share on its stock. The dividends are expected to grow at a constant 5 percent per year indefinitely. If investors require a 12 percent return on MegaCapital stock, what is the	
current price? What will the price be in 3 years? In 15 years?	
	-
	-
Problem 8.10	
Problem 8.10 ■ Metallica Bearings, Inc. is a young start-up company. No dividends will be paid on the stock over the next 5 years. The company will then begin paying a \$6.00 dividend, and will increase the dividend by 5% per year thereafter. If the required return on this stock is 23%, what is the current share price?	

		1
Pr	oblems with DDM	
	■ Constant discount rate	
	■ Constant dividend growth rate	
	How informative are dividends? What about zero-dividend stocks?	
	How stocks have been valued historically?	
	■ Same accounting numbers> Same stock Price	
		_
Re	sidual Income Model	
	 Developed in the accounting literature 	
	■ Built on DDM, with accounting assumptions	
	,	
	■ Focus on earnings rather than dividends	
	■ V = book value + PV (future residual income)	
<u> </u>		
		1
l w	hat factors affect a stock's price?	
	1.	
	2.	
	3.	
	 Other firm-specific business conditions 	
	·	

	٦
Bakshi-Chen-Dong (BCD) Stock Valuation Model	
■ A Generalization of DDM	
Uses earnings per share (EPS) instead of dividends. Advantages:	
■ Introduces stochastic components to the model	
Combines	
	٦
Continuous-time Finance	
 The BCD model is derived in a Continuous-time framework Assume trading time and business conditions (interest 	
rate, earnings, etc.) are continuous.	
 Since trading is not continuous, we discretize business variables in applications. 	
	٦
Interest Rate	
■ Stochastic interest rate: Vasicek (mean-reverting) process	
$dR(t) = \mathbf{k}_r [\mathbf{m}_r - R(t)] dt + \mathbf{s}_r d\mathbf{w}_r(t)$	
■ Stochastic pricing kernel No Arbitrage	

Farninge	and	Dividend	

Stochastic earnings: Earnings follow Geometric Brownian motion, with a mean-reverting growth rate:

$$\begin{aligned} &\frac{dY\left(t\right)}{Y\left(t\right)} = G\left(t\right)dt + \boldsymbol{s}_{y}d\boldsymbol{w}_{y}(t) \\ &dG\left(t\right) = \boldsymbol{k}\left[\boldsymbol{m}_{g} - G\left(t\right)\right]dt + \boldsymbol{s}_{g}d\boldsymbol{w}_{g}(t) \end{aligned}$$

- $\ \ \, \blacksquare \ \ \, dw_y$ and dw_g are Brownian motions (stochastic components).
- Dividend assumed to be a proportion of earnings:
- Dividend = δ *EPS + noise

$$\mathsf{D}(\mathsf{t}) = \delta \mathsf{Y}(\mathsf{t}) + \mathsf{e}(\mathsf{t})$$

Dealing with Negative Earnings

- Why are negative earnings troublesome?
- What is the growth rate of earnings if earnings are negative (e.g. from -2 to -1)?
- Solution:

The BCD Model

- Following standard steps in asset pricing we arrive at a partial differential equation (PDE) for the stock price.
- needs to be solved numerically.
- Estimating 11 parameters. How?
- Use 24 months of data to 'calibrate' the model. Effectively we are minimizing the error in the estimation period using previous 24 months market prices as a benchmark. The parameters capture a 'pricing rule' for each stock.
- Then we compute model price using 3 inputs (Interest rate, EPS0, EPS1)

•	
-	
-	

Features of BCD Model	
 Sound economic foundation - No arbitrage Takes into account firm's business conditions and market's historical valuation standards How? 	
■ Takes into account market expectationHow? ■ Can price any stock with earnings forecast data. No problems	
with no-dividend, negative earnings, negative book value	
A Definition of Mispricing	
$Mispricing = \frac{Market \ Price - Model \ price}{Model \ price}$	
woder price	
 Negative mispricing means Positive mispricing means 	
]
What Makes a Good Model?	
Zero average mispricing with small variance over time.	
2. Fast mean-reversion of mispricing.	
3. Mispricing should be significant predictor of future returns.	

