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After introducing some basic definitions, the article describes several optical interference experiments
in which quantum effects appear. An analysis of these experiments leads to some new and improved
measurement techniques and to a better understanding of the quantum state. [S0034-6861(99)02102-9]

I. INTRODUCTION

Although interference is intrinsically a classical wave
phenomenon, the superposition principle which under-
lies all interference is also at the heart of quantum me-
chanics. Feynman has referred to interference as really
‘‘the only mystery’’ of quantum mechanics. Further-
more, in some interference experiments we encounter
the idea of quantum entanglement, which has also been
described as really the only quantum mystery. Clearly
interference confronts us with some quite basic ques-
tions of interpretation. Despite its long history, going
back to Thomas Young at the beginning of the 19th cen-
tury, optical interference still challenges our understand-
ing, and the last word on the subject probably has not
yet been written. With the development of experimental
techniques for fast and sensitive measurements of light,
it has become possible to carry out many of the Gedan-
ken experiments whose interpretation was widely de-
bated in the 1920s and 1930s in the course of the devel-
opment of quantum mechanics. Although this article
focuses entirely on experiments with light, interference
has also been observed with many kinds of material par-
ticles like electrons, neutrons, and atoms. We particu-
larly draw the reader’s attention to the beautiful experi-
ments with neutron beams by Rauch and co-workers
and others (see, for example, Badurek et al., 1988).
Quantum optical interference effects are key topics of a
recent book (Greenstein and Zajonc, 1997), an extended
rather thorough review (Buzek and Knight, 1995) and
an article in Physics Today (Greenberger et al., 1993).

The essential feature of any optical interference ex-
periment is that the light from several (not necessarily
primary) sources like SA and SB (see Fig. 1) is allowed
to come together and mix, and the resulting light inten-
sity is measured at various positions. We characterize
interference by the dependence of the resulting light in-
tensities on the optical path length or phase shift, but we
need to make a distinction between the measurement of
a single realization of the optical field and the average
over an ensemble of realizations or over a long time. A
single realization may exhibit interference, whereas an
ensemble average may not. We shall refer to the former
as transient interference, because a single realization
usually exists only for a short time. Transient interfer-
ence effects have been observed in several optical ex-
periments in the 1950s and 1960s. (Forrester et al., 1955;
Magyar and Mandel, 1963; Pfleegor and Mandel, 1967,
1968).

We now turn to interference effects that are defined in
terms of an ensemble average. Let us start by distin-
guishing between second-order or one-photon, and
fourth-order or two-photon interference experiments. In
the simplest and most familiar type of experiment, one
photodetector, say D1 , is used repeatedly to measure
the probability P1(x1) of detecting a photon in some
short time interval as a function of position x1 [see Fig.
1(a)]. Interference is characterized by the (often, but not
necessarily, periodic) dependence of P1(x1) on the op-
tical path lengths SAD1 and SBD1 or on the correspond-
ing phase shifts fA1 and fB1 . Because P1(x1) depends
on the second power of the optical field and on the de-
tection of one photon at a time, we refer to this as
second-order, or one-photon, interference. Sometimes
two photodetectors D1 and D2 located at x1 and x2 are
used in coincidence repeatedly to measure the joint
probability P2(x1 ,x2) of detecting one photon at x1 and
one at x2 within a short time [see Fig. 1(b)]. Because
P2(x1 ,x2) depends on the fourth power of the field, we
refer to this as fourth-order, or two-photon, interfer-
ence. For the purpose of this article, a photon is any
eigenstate of the total number operator belonging to the
eigenvalue 1. That means that a photon can be in the
form of an infinite plane wave or a strongly localized
wave packet. Because most photodetectors function by
photon absorption, the appropriate dynamical variable

FIG. 1. Principle of photon interference: (a) one-photon or
second-order interference; (b) two-photon or fourth-order in-
terference. SA and SB are sources. D1 and D2 are photodetec-
tors.
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for describing the measurement is the photon annihila-
tion operator. If we make a Fourier decomposition of
the total-field operator Ê(x) at the detector into its
positive- and negative-frequency parts Ê(1)(x) and
Ê(2)(x), then these play the roles of photon annihila-
tion and creation operators in configuration space. Let
Ê(1)(x1), Ê(1)(x2) be the positive-frequency parts of
the optical field at the two detectors. Then P1(x1) and
P2(x1 ,x2) are given by the expectations in normal or-
der:

P1~x1!5a1^Ê ~2 !~x1!Ê ~1 !~x1!&, (1)

P2~x1 ,x2!5a1a2^Ê ~2 !~x1!Ê ~2 !~x2!Ê ~1 !~x2!Ê ~1 !~x1!&,
(2)

where a1 , a2 are constants characteristic of the detec-
tors and the measurement times.

II. SECOND-ORDER INTERFERENCE

Let us decompose Ê(1)(x1) and Ê(1)(x2) into two
normal modes A and B, such that âA , âB are the annihi-
lation operators for the fields produced by the two
sources SA and SB , respectively. Then we may put
Ê(1)(x1)5fAeifA1âA1fBeifB1âB , where fA , fB are
complex parameters, and similarly for Ê(1)(x2). From
Eq. (1) we then find

P1~x1!5a1@ ufAu2^n̂A&1ufBu2^n̂B&

1fA* fBei~fB12fA1!^ âA
† âB&1c.c.# . (3)

If second-order interference is characterized by the de-
pendence of P1(x1) on the optical path lengths or on the
phase difference fB12fA1 , then clearly the condition
for the system to exhibit second-order interference is
that ^âA

† âB&Þ0. This is usually achieved most easily if
the fields from the two sources SA and SB are at least
partly correlated or mutually coherent. We define the
degree of second-order mutual coherence by the nor-
malized correlation ratio

ugAB
~1,1!u[u^âA

† âB&u/~^âA
† âA&^âB

† âB&!1/2, (4)

so that, by definition, ugAB
(1,1)u lies between 0 and 1. But

such correlation is not necessary for interference. Even
with two independent sources it is apparent from Eq. (3)
that interference can occur if ^âA&Þ0Þ^âB&. An ex-
ample would be the two-mode coherent state
uvA&AuvB&B , with complex eigenvalues vA ,vB , for
which ^âA

† âB&5vA* vB , which is nonzero because of the
definite complex amplitude of the field in a coherent
state. The field of a single-mode laser is often well ap-
proximated by a coherent state for a short time. On the
other hand the corresponding expectations vanish for a
field in a Fock (photon number) state unA&AunB&B , for
which ^âA

† âB&50. Therefore there is no second-order in-
terference in this case. Needless to say, this situation has
no obvious counterpart in classical optics.

In order to understand why interference effects occur
in some cases and not in others, we need to recall that

interference is the physical manifestation of the intrinsic
indistinguishability of the sources or of the photon
paths. If the different possible photon paths from source
to detector are indistinguishable, then we have to add
the corresponding probability amplitudes before squar-
ing to obtain the probability. This results in interference
terms as in Eq. (3). On the other hand, if there is some
way, even in principle, of distinguishing between the
possible photon paths, then the corresponding probabili-
ties have to be added and there is no interference.

Let us see how this argument works when each source
consists of a single two-level atom. When the atom is in
the fully excited state (an energy eigenstate), its energy
can be measured, in principle, without disturbing the
atom. Suppose that both sources are initially in the fully
excited state and that the energy of each atom is mea-
sured immediately after the detection of a photon by
D1 . If source A is found to be in the ground state
whereas source B is found to be still excited, then, obvi-
ously, SA can be identified as the source of the photon
detected by D1 . Therefore there is no second-order in-
terference in this case, and this conclusion holds regard-
less of whether the energy measurement is actually car-
ried out. In this case, the optical field is in a one-photon
Fock state u1&Au0&B for which ^âA

† âB&50. On the other
hand, if the atoms are in a superposition of upper and
lower states initially, then the atomic energy has no well-
defined initial value and it cannot be measured without
disturbing the atom. The source of the detected photon
therefore cannot be identified by measuring the atomic
energy, or in any other way, and, as a result, second-
order interference is observed. This argument can be
made more quantitative in that the degree of second-
order coherence ugAB

(1,1)u in Eq. (4) can be shown to equal
the degree of path indistinguishability (Mandel, 1991).

It should be clear from the foregoing that in these
experiments one photon does not interfere with another
one; only the two probability amplitudes of the same
photon interfere with each other. This has been con-
firmed more explicitly in interference experiments with
a single photon (Grangier et al., 1986) and in experi-
ments with two independent laser beams, in which inter-
ference was observed even when the light was so weak
that one photon passed through the interferometer and
was absorbed by the detector long before the next pho-
ton came along (Pfleegor and Mandel, 1967, 1968).

III. FOURTH-ORDER INTERFERENCE

We now turn to the situation illustrated in Fig. 1(b), in
which two photodetectors are used in coincidence to
measure the joint probability P2(x1 ,x2) of detecting one
photon at x1 and one at x2 . Fourth-order interference
occurs when P2(x1 ,x2) depends on the phase differ-
ences fA12fB2 , and this happens when the different
paths of the photon pair from the sources to the detec-
tors are indistinguishable. Then we again have to add
the corresponding (this time two-photon) probability
amplitudes before squaring to obtain the probability.
From Eq. (2) one can show that
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P2~x1 ,x2!5a1a2$ufAu4^ :n̂A
2 :&1ufBu4^ :n̂B

2 :&12ufAu2ufBu2^n̂A&^n̂B&@11cos~fB22fA21fA12fB1!#

1fA*
2fB

2 ^âA
†2âB

2 &ei~fB22fA21fB12fA1!1c.c.1ufAu2fA* fB^âA
†2âAâB&@ei~fB12fA1!1ei~fB22fA2!#1c.c.

1ufBu2fB* fA^âB
†2âBâA&@ei~fA12fB1!1ei~fA22fB2!#1c.c.%, (5)

where ^ :n̂r:& denotes the rth normally ordered moment
of n̂ .

For illustration, let us focus once again on the special
case in which each source consists of a single excited
two-level atom. We have seen that in this case there is
no second-order interference, because the source of
each detected photon is identifiable in principle. But the
same is not true for fourth-order interference of the
photon pair. This time there are two indistinguishable

two-photon paths, viz., (a) the photon from SA is de-
tected by D1 and the photon from SB is detected by D2
and (b) the photon from SA is detected by D2 and the
photon from SB is detected by D1 . Because cases (a)
and (b) are indistinguishable, we have to add the corre-
sponding two-photon amplitudes before squaring to ob-
tain the probability, and this generates interference
terms. In this case most terms on the right of Eq. (5)
vanish, and we immediately find the result given by (see
Box A)

P2~x1 ,x2!5a1a22ufAu2ufBu2

3@11cos~fB22fA21fA12fB1!# . (6)

Despite the fact that the two sources are independent,
they exhibit two-photon interference with 100 percent
visibility.

Two-photon interference exhibits some striking non-
local features. For example, P2(x1 ,x2) given by Eq. (6)
can be shown to violate one or more of the Bell in-
equalities that a system obeying local realism must sat-
isfy. This violation of locality, which is discussed more
fully in the article by Zeilinger in this issue, has been
demonstrated experimentally. [See, for example, Man-
del and Wolf, 1995.]

IV. INTERFERENCE EXPERIMENTS WITH A PARAMETRIC
DOWNCONVERTER SOURCE

The first two-photon interference experiment of the
type illustrated in Fig. 1(b), in which each source deliv-
ers exactly one photon simultaneously, was probably the
one reported by Ghosh and Mandel in 1987. They made
use of the signal and idler photons emitted in the split-
ting of a pump photon in the process of spontaneous
parametric downconversion in a nonlinear crystal of
LiIO3. The crystal was optically pumped by the
351.1-nm uv beam from an argon-ion laser and from
time to time it gave rise to two simultaneous signal and
idler photons at wavelengths near 700 nm. A modified
and slightly improved version of the experiment was
later described by Ou and Mandel (1989). The signal (s)
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and idler (i) photons were incident from opposite sides
on a 50%:50% beam splitter that mixed them at a small
angle u'1 mrad, and the two mixed beams then fell on
detectors D1 and D2 , each of which carried a 0.1-mm-
wide aperture. The photons counted by each detector
separately and by the two detectors in coincidence in a
total time of a few minutes were registered for various
positions of the detectors. Because of the two-photon
state, no second-order interference is expected from
quantum mechanics, as we have seen, and none was ob-
served. However, the two-photon coincidence rate ex-
hibited the expected interference in the form of a peri-
odic variation of the rate with detector position, because
the photon pair detected by D1 and D2 could have origi-
nated as signal and idler, respectively, or vice versa.

An ingenious variation on the same theme of two-
photon interference was proposed by Franson (1989)
and is illustrated in Fig. 2. Signal and idler photons emit-
ted simultaneously in two slightly different directions
from a parametric downconverter (PDC) fall on two de-
tectors Ds and Di , respectively. The two beams never
mix. On the way to the detector each photon encounters
a beam splitter leading to an alternative time-delayed
path, as shown, and each photon is free to follow either
the shorter direct or the longer delayed path. If the time
difference TD between the long and short paths is much
longer than the coherence time TC of the downcon-
verted light, and much longer than the coincidence re-
solving time TR , no second-order interference is to be
expected, and at first glance it might seem that no
fourth-order interference would occur either. But the
signal and idler photons are emitted simultaneously,
and, within the coincidence resolving time, they are de-
tected simultaneously. Therefore in every coincidence
both photons must have followed the short path or both
photons must have followed the long path, but we can-
not tell which. When TC!TD!TR two more path com-
binations are possible. With continuous pumping of the
parametric downconverter the emission time is random
and unknown, and there is no way to distinguish be-
tween the light paths. We therefore have to add the cor-
responding probability amplitudes, which leads to the

prediction of fourth-order interference as the path dif-
ference in one arm is varied. This has been confirmed
experimentally. A different outcome may be encoun-
tered with pulsed rather than continuous excitation of
the parametric downconverter.

V. INTERFERENCE EXPERIMENTS WITH TWO
PARAMETRIC DOWNCONVERTERS

Next let us consider the experiment illustrated in Fig.
3, which allows both one-photon and two-photon inter-
ference to be investigated at the same time. Two similar
nonlinear crystals NL1 and NL2, which both function as
parametric downconverters, are optically pumped simul-
taneously by mutually coherent pump beams that we
shall treat classically and represent by the complex field
amplitudes V1 and V2 . As a result downconversion can
occur at NL1, with the simultaneous emission of a signal
s1 and an idler i1 photon in two slightly different direc-
tions, or downconversion can occur at NL2, with the
simultaneous emission of an s2 and an i2 photon, as
shown. The question we wish to address is whether, in
view of the mutual coherence of the two pump beams,
the s1 and s2 beams from the two downconverters are
mutually coherent and exhibit interference when they
are mixed, and similarly for the i1 and i2 beams. In order
to answer the question the experiment illustrated in Fig.
3 is carried out. s1 and s2 are allowed to come together;
they are mixed at the 50%:50% signal beam splitter
BSA , and the combined beam emerging from BSA falls
on the photon detector DA . If s1 and s2 are mutually
coherent, then the photon counting rate of DA varies
sinusoidally as the phase difference between the two
pump beams V1 and V2 is slowly increased. Similarly for
the two idlers i1 and i2 , which are mixed by BSB and
detected by DB .

In order to treat this problem theoretically we repre-
sent the quantum state of the signal and idler photon
pair from each crystal by the entangled state uC j&
5Mjuvac&sj ,i j

1hVju1&sj
u1& i j

(j51,2). The combined
state is then the direct product state uC&5uC1&3uC2&,
because the two downconversions proceed indepen-
dently. V1 and V2 are the c-number complex amplitudes
of the pump fields. h represents the coupling between
pump modes and the downconverted signal and idler
modes, such that ^uhVju2& (j51,2) is the small probabil-
ity of downconversion in a short measurement time. M1
and M2 are numerical coefficients that ensure the nor-
malization of uC1& and uC2&, which we take to be real

FIG. 2. Principle of the Franson (1989) two-photon interfer-
ence experiment in which signal and idler photons never mix.
PDC is the parametric downconverter. Ds and Di are photo-
detectors.

FIG. 3. Principle of the interference experiment with two
downconverters in which both one-photon and two-photon in-
terference can be investigated (after Ou et al., 1990).
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for simplicity. Because ^uhVju2&!1 it follows that M1
and M2 are very close to unity. We shall retain the co-
efficients M1 and M2 nevertheless, because they provide
us with useful insight into the role played by the
vacuum. Of course the downconverted light usually has
a very large bandwidth, and treating each signal and
idler as occupying one monochromatic mode is a gross
oversimplification. However, a more exact multimode
treatment leads to very similar conclusions about the
interference.

The positive-frequency parts of the signal and idler
fields at the two detectors can be given the two-mode
expansions Ês

(1)5 â s1eius11i âs2eius2 and Êi
(1)5 â i1eiu i1

1i â i2eiu i2, where us1 ,us2 ,u i1 ,u i2 are phase shifts corre-
sponding to the propagation from one of the two sources
NL1, NL2 to one of the two detectors DA , DB . Then
the expectations of the number of photons detected by
DA and by DB are ^CuÊs

(2)Ês
(1)uC& and

^CuÊi
(2)Êi

(1)uc& , and for the quantum state uC&
5uC1&3uC2& we obtain immediately

^CuÊs
~2 !Ês

~1 !uC&5uhu2~^uV1u2&1^uV2u2&!

5^CuÊi
~2 !Êi

~1 !uC& . (7)

These averages are independent of the interferometric
path lengths and of the phases of the two pump beams,
showing that there is no interference and no mutual co-
herence between the two signals s1 , s2 or between the
two idlers i1 , i2 . These conclusions are confirmed by the
experimental results presented in Fig. 4, which exhibit
no sign of second-order or one-photon interference.

Next let us look at the possibility of fourth-order or
two-photon interference, by measuring the joint prob-
ability of detecting a signal photon and an idler photon
with both detectors in coincidence. This probability is
proportional to P125^CuÊs

(2)Êi
(2)Êi

(1)Ês
(1)uC&, and it

is readily evaluated. If uV1u25I5uV2u2 and uhu2I!1, so
that terms of order uhu4I2 can be neglected, we find

P1252uhu2^I&@12M1M2ug12
~1,1!ucos Q# , (8)

where U[us21u i22us12u i11arg(g12
(1,1)) and g12

(1,1)

[^V1* V2&/^I& is the complex degree of coherence of the
two classical pump beams. A two-photon coincidence
measurement with both detectors DA and DB is there-
fore expected to exhibit interference as the optical path
difference or the pump phase difference is varied. This is
confirmed by the experimental results shown in Fig. 5. It
is interesting to note that the vacuum contribution to the
state plays an essential role, because of the presence of
the M1M2 coefficients in Eq. (8).

Finally, we would like to understand in physical terms
why no second-order interference is registered by detec-
tors DA and DB separately, but fourth-order interfer-
ence is registered by the two together. Here it is helpful
to recall the relationship between interference and indis-
tinguishability. From the coincidence measurement in
Fig. 5 it is impossible to determine whether the detected
photon pair originates in NL1 or in NL2, and this indis-
tinguishability is manifest as a fourth-order interference
pattern. However, if we are interested only in the inter-
ference of, say, the signal photons registered by DA , we
can use the detection of the idlers as an auxiliary source
of information, to determine where each detected signal
photon originated. This destroys the indistinguishability
of the two sources and kills the interference of the signal
photons, whether or not the auxiliary measurement is
actually carried out.

Figure 6 illustrates a one-photon interference experi-
ment with two downconverters that exhibits interesting
nonclassical features (Zou et al., 1991). NL1 and NL2
are two similar nonlinear crystals of LiIO3 functioning as
parametric downconverters. They are both optically
pumped by the mutually coherent uv light beams from
an argon-ion laser oscillating on the 351.1-nm spectral
line. As a result, downconversion can occur at NL1 with
the simultaneous emission of a signal s1 and an idler i1
photon at wavelengths near 700 nm, or it can occur at
NL2 with the simultaneous emission of an s2 and i2 pho-
ton. Simultaneous downconversions at both crystals is
very improbable. NL1 and NL2 are aligned so as to
make i1 and i2 collinear and overlapping, as shown, so
that a photon detected in the i2 beam could have come

FIG. 4. Results of measurements of the photon counting rate
by DA and DB in Fig. 3 as a function of path difference, show-
ing the absence of one-photon interference.

FIG. 5. Results of coincidence measurements by DA and DB

in Fig. 3 as a function of path difference, showing two-photon
interference. The continuous curve is theoretical.
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from NL1 or NL2. At the same time the s1 and s2 signal
beams come together and are mixed at beam splitter
BS0. The question to be explored is whether, in view of
the mutual coherence of the two pump beams, s1 and s2
are also mutually coherent and exhibit interference, un-
der the conditions when the downconversions at NL1
and NL2 are spontaneous and random. More explicitly,
if BS0 is translated in a direction normal to its face. will
the photon counting rate of detector Ds vary sinusoi-
dally, thereby indicating that interference fringes are
passing across the photocathode?

With the experiment in Fig. 3 in mind, one might not
expect to see one-photon interference at Ds , but, as
shown in Fig. 7 (curve A), interference fringes were ac-
tually observed so long as i1 and i2 were well aligned
and overlapped. The relatively small visibility of the in-
terference is largely due to the incomplete overlap of the
two idlers. However, after deliberate misalignment of i1
and i2 , or if i1 was blocked from reaching NL2, all in-
terference disappeared, as shown by curve B in Fig. 7.
Yet the average rate of photon emission from NL2 was
unaffected by blocking i1 or by misalignment. In the ab-
sence of induced emission from NL2, how can this be
understood?

Here it is instructive again to invoke the relationship
between interference and indistinguishability. Let us
suppose that an auxiliary perfect photodetector Di is
placed in the path of the i2 beam equidistant with Ds
from NL2, as shown in Fig. 6. Now the insertion of Di in
the path of i2 does not in any way disturb the interfer-
ence experiment involving the s1 and s2 beams. How-
ever, when i1 is blocked, Di provides information about
the source of the signal photon detected by Ds . For
example, if the detection of a signal photon by Ds is
accompanied by the simultaneous detection of an idler
photon by Di , a glance at Fig. 6 shows immediately that
the signal photon (and the idler) must have come from
NL2. On the other hand, if the detection of a signal
photon by Ds is not accompanied by the simultaneous
detection of an idler by Di , then the signal photon can-
not have come from NL2 and must have originated in
NL1. With the help of the auxiliary detector Di we can
therefore identify the source of each detected signal
photon, whenever i1 is blocked, and this distinguishabil-

ity wipes out all interference between s1 and s2 . A simi-
lar conclusion applies when the two idlers i1 and i2 do
not overlap, so that they can be measured separately.
However, when i1 is unblocked and the two idlers over-
lap, this source identification is no longer possible, and
s1 and s2 exhibit interference. Needless to say, it is not
necessary actually to carry out the auxiliary measure-
ment with Di ; the mere possibility, in principle, that
such a measurement could determine the source of the
signal photon is sufficient to kill the interference of s1
and s2 .

This kind of argument leads to an important conclu-
sion about the quantum state of a system: in an experi-
ment the state reflects not what is actually known about
the system, but rather what is knowable, in principle,
with the help of auxiliary measurements that do not dis-
turb the original experiment. By focusing on what is
knowable in principle, and treating what is known as
largely irrelevant, one completely avoids the anthropo-
morphism and any reference to consciousness that some
physicists have tried to inject into quantum mechanics.
We emphasize here that the act of blocking the path of
i1 between NL1 and NL2 kills the interference between
s1 and s2 not because it introduces a large uncontrol-
lable disturbance. After all, the signal photons s1 and s2
are emitted spontaneously and the spontaneous emis-
sions are not really disturbed at all by the act of blocking
i1 . In this experiment the disturbance introduced by
blocking i1 is of a more subtle kind: it is only the possi-
bility of obtaining information about the source of the
signal photon which is disturbed by blocking i1 .

If, instead of blocking i1 completely from reaching
NL2, one merely attenuates i1 with some sort of optical
filter of complex transmissivity T, then the degree of co-
herence and the visibility of the interference pattern
formed by s1 and s2 are reduced by the factor uT u (Zou
et al., 1991). This provides us with a convenient means
for controlling the degree of coherence of two light-

FIG. 6. Outline of the one-photon interference experiment
with two downconverters (Zou et al., 1991). See text for de-
scription.

FIG. 7. Results of the one-photon interference experiment
shown in Fig. 6: A, data with i1 unblocked; B, data with i1
blocked.
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beams s1 and s2 with a variable filter acting on i1 , with-
out affecting the light intensities of s1 and s2 . Finally,
insofaras i1 falling on NL2 may be said to induce coher-
ence between s1 and s2 from the two sources NL1 and
NL2, we have here an example of induced coherence
without induced emission.

VI. MEASUREMENT OF THE TIME INTERVAL BETWEEN
TWO PHOTONS BY INTERFERENCE

The same fourth-order two-photon interference effect
has been used to measure the time separation between
two photons with time resolution millions of times
shorter than the resolution of the detectors and the elec-
tronics (Hong et al., 1987). Let us consider the experi-
ment illustrated in Fig. 8. Here the signal and idler pho-
tons emitted from a uv-pumped crystal of potassium
dihydrogen phosphate (KDP) serving as parametric
downconverter are sent in opposite directions through a
symmetric 50%:50% beam splitter (BS) that mixes
them. The emerging photon pair is allowed to impinge
on two similar photon detectors D1 and D2 , whose out-
put pulses are counted both separately and in coinci-
dence as the beam splitter is translated in the direction
shown though a distance of a few wavelengths. The co-
herence time Tc of the downconverted light is made
about 10213 sec with the help of the interference filters
IF1, IF2.

Let us consider the quantum state uc& of the photon
pair emerging from the beam splitter. With two photons
impinging on BS from opposite sides there are really
only three possibilities for the light leaving BS: (a) one
photon emerges from each of the outputs 1 and 2; (b)
two photons emerge from output 1 and none emerges
from output 2; (c) two photons emerge from output 2
and none emerges from output 1. The quantum state of
the beam-splitter output is actually a linear superposi-
tion of all three possibilities in the form

uc&5~ uRu22uT u2!u1&1u1&2

1&iuRT u@ u2&1u0&21u0&1u2&2], (9)

where R and T are the complex beam-splitter reflectivity
and transmissivity. When uRu51/&5uTu, the first term

on the right vanishes, which implies the destructive in-
terference of the photon pair in arms 1 and 2, and both
photons emerge together either in arm 1 or in arm 2.
Therefore no coincidence counts (other than acciden-
tals) between detectors D1 and D2 are registered. The
reason for this can be understood by reference to Fig. 8.
A coincidence detection between D1 and D2 can occur
only if the two incoming signal and idler photons are
either both reflected from the beam splitter or are both
transmitted through the beam splitter. Because these
two possible photon paths are indistinguishable, we have
to add the corresponding two-photon probability ampli-
tudes before squaring to obtain the probability. But be-
cause of the phase change that occurs on reflection from
the beam splitter, as compared with that on transmis-
sion, the two-photon probability amplitude for two re-
flections from BS is 180° out of phase with the corre-
sponding two-photon probability amplitude for two
transmissions through BS. When these two amplitudes
are added they give zero.

Needless to say, this perfect destructive interference
of the photon pair requires two identical incident pho-
tons, and their description goes well beyond our over-
simplified two-mode treatment. If we think of the in-
coming entangled photon pair as two identical wave
packets that overlap completely in time, then it should
be obvious that if one wave packet is delayed even
slightly relative to the other, perfect destructive interfer-
ence is no longer possible, and the apparatus in Fig. 8 no
longer yields zero coincidences. The greater the relative
time delay tD , the greater is the two-photon coinci-
dence rate Rc , and by the time the delay tD exceeds the
time duration of the wave packet, the coincidence rate
Rc becomes constant and independent of the time delay
tD between the wave packets. For wave packets of
Gaussian shape and bandwidth Dv, and with a 50%:50%
beam splitter, one finds that Rc is given by (see Box B)

FIG. 8. Outline of the two-photon interference experiment to
measure the time separation between signal and idler photons
(Hong et al., 1987). See text for description.

FIG. 9. Results of the two-photon interference experiment
shown in Fig. 8. The measured coincidence rate is plotted as a
function of beam-splitter displacement in mm or differential
time delay in fsec. The continuous curve is theoretical.
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Rc}K@12e2tD
2

~Dv!2
# . (10)

The two-photon coincidence rate Rc is therefore ex-
pected to vary with the time delay tD as in Fig. 9. This
has indeed been observed in an experiment in which the
differential time delay tD was introduced artificially by
translating the beam splitter BS in Fig. 8 (Hong et al.,
1987). It is worth noting that the measurement achieved
a time resolution of a few femtoseconds, which is a mil-
lion times shorter than the time resolution of the photon
detectors and the associated electronics. This is possible
because the measurement was really based on optical
interference. In some later experiments the resolution
time was even shorter than the period of the light. The
same principle has been used by Chiao and co-workers
to measure photon tunneling times through a barrier.

VII. CONCLUSIONS

We have seen that quantum effects can show up in
both one-photon and two-photon interference. The
analysis of some interference experiments confronts us
with fundamental questions of interpretation and brings
out that the quantum state reflects not what we know
about the system, but rather what is knowable in prin-
ciple. This avoids any reference to consciousness in the
interpretation of the state. Finally, quite apart from their
fundamental interest, quantum interference effects have
led to some valuable practical applications, such as the
new method for measuring the time separation between
two photons on a femtosecond time scale, and new tech-

niques of controlling the degree of coherence of two
light beams without change of intensity.
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