
Chapter 0

Introductory Information

0.1 General Information

0.1.1 Why do Laboratory Work?

Firstly, all science is based on a foundation of experimental data and your experiments will
exemplify and illuminate many of the principles studied in the lectures. We try to timetable
experiments as near as possible to the related material in the lecture schedule. However,
details in the operation of the laboratories prevent us from achieving a perfect match and
we ask you to be tolerant in this regard.

Secondly, the laboratory will be a medium for teaching some new material which will not
be covered in the lecture course.

Thirdly, it gives you an opportunity to train your brain, eyes and hands in good experimental
techniques, while familiarizing yourself with some of the instruments used in experimental
science.

Obtaining good results is important, particularly if you intend to go on to more difficult
labs. But do not get so involved in the mechanics of ”doing” that you lose sight of the goal
of the experiment, the theory behind it, and its wider applications.

You will need:

� this manual (print your name on it)

� the usual writing materials (graph paper is provided)

� a calculator

0.1.2 Lab Schedules and Attendance

The laboratories are located in 102C and 102D Bethune College.

You will have been assigned to a particular 3-hour laboratory time at registration. In the
first few days of the course, this can be changed through the online registration system.
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Otherwise, this may only be changed by arrangement with Lab Coordinator. The schedule
is included at the front of the manual. Students are required to attend all laboratory sessions
to which they are assigned. Please be certain to sign the demonstrator’s mark
list as proof of attendance. Absence due to illness or other legitimate cause should
be reported to Lab Coordinator as soon as possible so that credit may be obtained or an
alternate lab assigned.

0.1.3 Prelab Preparation and Reports

You will know from the posted schedule which experiment you will be doing. Before
coming to do the experiment, you are expected to read the appropriate section
of this manual. Be sure you understand the theory involved, consult your textbook, and
plan your practical work. Most of the lab outlines contain prelab exercises which must be
completed on a separate sheet of paper before you come to the lab. This preparation is
most important. It is unlikely that you will be able to finish the experiment satisfactorily
or learn from them if you do not prepare beforehand. There may be short, unannounced
quizzes on the experiment during some labs.

A sample lab report is included in the manual (Appendix C).

We do not require you to write an elaborate report for each experiment. The report should
include name, name of partner, title and date. The experimental data, whenever possi-
ble, should be summarized in the form of a table, with title, column headings, units and
experimental uncertainties. Graphs should have titles, axes labeled and units included.
Uncertainties of all measured quantities should be indicated on graphs in the form of error
bars. Calculations should be shown and organized in a logical way, with short comments
and explanations. Just formulas with substituted data are not acceptable. Calculations of
uncertainties is an important part of the lab report (next section in the manual provides
more information regarding uncertainty calculations and rounding of final result and its
uncertainty).

You are encouraged to record in your report for future reference any comments regarding
the theory or method or apparatus which enhance your understanding. Your report should
resemble a research scientist’s day-to-day experimental log rather than a polished scientific
paper.

It is preferred that you write laboratory reports in notebooks, which encourage better
organization and neatness. Do not tear pages out of the books, if a mistake is made, simply
cross out the mistake neatly. Two books will be required to be used alternately throughout
the year. Light weight coil notebooks are suitable. Put your name and lab time clearly on
the outside.

The three-hour session should be sufficient for the taking of measurements and for calcu-
lations and conclusions, etc. Be punctual - latecomers will find it difficult to complete the
assignment. All lab reports, finished or unfinished, must be handed in to your
demonstrator by the end of the three-hour lab session.

Your report will be marked by the demonstrator whose name appears on the top of the
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attendance list which you sign. It will be your responsibility to collect your report from this
demonstrator during your next laboratory session. At this time you should discuss with
your demonstrator any matters concerning the report(s).

0.1.4 Lab Marks

The final lab mark will contribute approximately 10-20% (depending on the course) to the
final grade. It will take into consideration prelab questions and quizzes, and the weekly lab
reports. Students should keep their lab reports for reference and as a record of marks. All
your lab marks will be posted on Moodle for you to check.

0.1.5 Lab Partners

Some students claim that they learn more while working with a lab partner; others prefer
to work alone. For certain experiments where basic techniques, etc. are explored, you will
be required to work individually - this will be stated in the lab outline for those particular
experiments. For the other experiments we will try to provide sufficient apparatus so that
you may work with another student who has been assigned the same experiment or alone, as
you prefer. For a few of the experiments the mechanical work is so difficult that one person
cannot perform the experiment satisfactorily. If two students work together, each should
take a turn at reading all the instruments and although both will have the same data, each
student must submit an independent report, with independent calculations. No
more than two students working together as lab partners is allowed.

Lab partners are randomly assigned. This facilitates meeting many friends, promotes social
skills as well as reduces the probability of dishonesty when doing lab work. The details of
how lab partners are assigned will be explained in the first lab.

0.1.6 Cleanliness and Care of Equipment

We do not charge you for accidental breakages, but please report them to the demonstrator
or lab technologist immediately, so that equipment can be replaced or repaired.

Students must leave their place of work in the lab neat with all the apparatus complete.
Each experimental set-up will be used by approximately forty students before it is retired
for the year, so leave it for the next student in the state in which you would like to find
it.

When a student hands in a report, the demonstrator will check their place
of work to see that it is left in satisfactory condition. When satisfied, the
demonstrator will accept the report.

0.1.7 Lab Safety

Scientists very commonly live to a grand old age in spite of their daily encounters with
many hazards. The main reason for this is that a scientist doing an experiment is paying
very close attention to everything that happens, is expecting the unknown and can react
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quickly to it. Your best protection against accidents in the lab is a constant thoughtful
alertness which never permits your actions to become mechanical and reflex.

Specific hazards which exist in particular experiments will be stressed in the respective lab
outline. Please pay very careful attention to these warnings and act accordingly.

Notify the demonstrator or lab technician of any accident or injury no matter how insignif-
icant it may seem.

In the case of a fire, at the sound of the fire alarm in the building, the university stipulates
that everyone must leave the building. In the case of a fire in the lab students and demon-
strators must leave the building immediately. The demonstrator is responsible for taking
the appropriate action to scale the lab marks.

A 24-hour Emergency Services Telephone Centre operates on York Campus
and can be alerted by calling 33333 on all campus telephones or 736-2100 Ext.
33333 on public or off-campus telephones.

Health services are located in York Lanes.

0.1.8 Academic Honesty

Students will certainly discuss and talk about their studies with their friends and this can
be very useful; but any work that you hand in must have been done by yourself. This is the
only way to test your own competence and to prepare yourself for positions of responsibility
after graduation. If scientists are dishonest, they are useless.

THE UNIVERSITY CONSIDERS ALL FORMS OF COPYING AND CHEAT-
ING TO BE SERIOUS OFFENCES.

0.2 Measurement and Uncertainties

0.2.1 Measurements

There are several requirements that must be met if a measurement is to be useful in a
scientific experiment:

The Number of Determinations It is a fundamental law of laboratory work that a
single measurement is of little value because of the liability not only to gross mistakes but
also to smaller random errors. Accordingly, it is customary to repeat all measurements
as many times as possible. The laws of statistics lead to the conclusion that the value
having the highest possibility of being correct is the arithmetic mean or average, obtained
by dividing the sum of the individual readings by the total number of observations. Because
of time limitations, we often suggest you do a minimal number of repetitive measurements
but remember this reduces the reliability and respectability of your results.

4



Introductory Information

Zero Reading Every measurement is really a difference between two readings, although
for convenience, most instruments are calibrated so that one of these readings will be zero.
In many instruments, this zero is not exact for all time but may shift slightly due to wear
or usage. Thus it is essential that the zero be checked before every measurement where it is
one of the two readings. In some cases the zero can be reset manually, while in others it is
necessary to record the exact zero reading and correct all subsequent readings accordingly.
e.g. When measuring the length AB shown in Fig. 1, a ruler could be placed (1) with 1.2
cm at A, then length AB = (4.0 - 1.2) cm = 2.8 cm. The more usual ruler position (2)
allows the length AB to be read as 2.8 cm directly, but remember this is still the difference
between two readings: 2.8 cm and 0.0 cm.

Figure 1: Example of measuring length

Accuracy Quantitative work requires that each measurement be made as accurately as
possible. The main units of a scale are usually divided, and the eye can easily subdivide
a small a distance of 1 mm into five parts reasonably accurately. Thus, if a linear scale is
divided into millimeters, e.g. on a high quality ruler, a reading could be expressed to 0.2
of a millimeter; e.g. 4.6 mm, 27.42 cm, where 3/5 and 1/5 of a mm are estimated by eye.
In cases where the reading falls exactly on a scale division, the estimated figure would be
0; e.g. 48.50 cm, indicating that you know the reading more accurately than 48.5 cm. But
it would not be possible to take a reading with greater accuracy then 0.2 mm with this
equipment. If the scale is not finely engraved, the lab meter sticks for example, it could
probably only be read as 0.5 mm.

The accuracy desired from a measurement dictates the choice of instrument. For example,
a distance of 4 m should not be measured by a car’s odometer, nor a distance of 2 km with
a micrometer. The student learns to decide which instrument is most appropriate for a
certain measurement. Ideally, all measurements for any one experiment should have about
the same percentage accuracy.

Significant Figures A significant figure is a digit which is reasonably trustworthy. One
and only one estimated or doubtful figure can be retained and regarded as significant in
any measurement, or in any calculation involving physical measurements. In the examples
presented in the Accuracy paragraph above, 4.6 mm has two significant figures, 27.42 cm
has four significant figures.

The location of the decimal point has no relation to the number of significant figures. The
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reading 6.54 cm could be written as 65.4 mm or as 0.0654 m without changing the number
of significant figures - three in each case.

The presence of a zero is sometimes troublesome. If it is used merely to indicate the location
of the decimal point, it is not called a significant figure, as in 0.0654 m; if it is between two
significant digits, as in a temperature reading of 20.5�C , it is always significant. A zero
digit at the end of a number tends to be ambiguous. In the absence of specific information
we cannot tell whether it is there because it is the best estimate or merely to locate the
decimal point. In such cases the true situation should be expressed by writing the correct
number of significant figures multiplied by the power of 10.

Thus a student measurement of the speed of light, 186,000 mi/s is best written as 1.86x105mi/s
to indicate that there are only three significant figures. The latter form is called standard
notation, and involves a number between 1 and 10 multiplied by the appropriate power of
10. It is equally important to include the zero at the end of a number if it is significant. If
reading a meter-stick, one estimates to a fraction of a millimeter, then a reading of 20.00
cm is written quite correctly. In such a case, valuable information would be thrown away
if the reading were recorded as 20 cm. The recorded number should always express the
degree of accuracy of the reading. In computations involving measured quantities, carry
only those digits which are significant. Consider a rectangle whose sides are measured as
10.77 and 3.55 cm (the doubtful digits are in bold). When these lengths are added to find
the perimeter the last digit in the answer will also be doubtful.

10.77

10.77

3.55

±3.55

28.64

When the lengths are multiplied to obtain the area, any operation by a doubtful digit results
in a doubtful digit.

10.7 7
× 3.5 5

0.0 5385
5.385

32.381

38.0 2335

In the result only one doubtful digit is retained and the area is 38.2cm2. When rounding
off a number with too many insignificant figures, retain the last digit unchanged if the first
digit dropped < 5: increase it by 1 if the first digit dropped ≥ 5.

In the lab this year, most of your calculations will probably be limited to three significant
figures by the measuring devices. A calculator quickly produces about 8 mathematically

6



Introductory Information

significant figures, but, in your final answer, record only those figures that have physical
significance.

0.2.2 Uncertainties �Errors)

A quantity measured or calculated by a scientists is only of value if he/she can attach to it
quantitative limits within which he/she expects that it is accurate - that is, its uncertainty.
An uncertainty of 50% or even 100% is a vast improvement over no knowledge at all: an
accuracy of �10% is a great improvement over �50% and so on. In fact much of science is
directed toward reducing the uncertainties in specific quantities of scientific interest.

The uncertainty in a reading or calculated value is technically called on error. The word has
this precise meaning in science and carries no implication of mistake or sin. This manual
uses the words error and uncertainty interchangeably.

A Systematic Error is one which always produces an error of the same sign. Systematic
errors may be sub-divided into three groups: instrumental, personal and external. Correc-
tions should be made for systematic errors when they are known to be present.

An Instrumental Error is caused by faulty or inaccurate apparatus; for example an
undetected zero error in a scale or an incorrectly adjusted watch. If 0.2 mm has been worn
off the end of a ruler, all readings will be 0.02 cm too high.

Personal Errors are due to some peculiarity or bias of the observer. Probably the most
common source of personal error is the tendency to assume that the first reading taken is
correct. A scientist must constantly be on guard against any bias of this nature and make
each measurement as if it were completely isolated from all previous experience. Other
personal errors may be due to fatigue, the position of the eye relative to a scale, etc.

External Errors are caused by external conditions (wind, temperature, humidity, vibra-
tion); examples are the expansion of a scale as the temperature rises or the swelling of a
meter stick as humidity increases.

Random Errors Random errors occur as variations which are due to a large number
of factors. Each factor adds its own contribution to the total error. Resulting error is
a matter of chance and, therefore, positive and negative errors are equally probable.
Because random errors are subject to the laws of chance, their effect in the experiment may
be lessened by taking a large number of observations. A simplified statistical treatment of
random errors is described in Appendix A of this manual.

The Error Interval If it is not practical or possible to repeat a measurement many
times, the errors in measurement must be estimated differently.

Since the last digit recorded for a reading is only an estimation, there is some possibility of
error in this digit due to the instrument itself and the judgement of the observer. Hence,
the best that can be done is to assign some limits within which the observer believes the
reading to be accurate.
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A reading of 6.540 cm might imply that it lay between 6.538 and 6.542 cm. The reading
would then be recorded as (6.540 ± 0.002 cm). The scales on most instruments are as
finely divided by the manufacturer as it is practical to read. Hence, the error interval will
probably be some fraction of the smallest readable division on the instrument; it might
be 0.5 of a division, or perhaps 0.2 of a division. The error interval is a property of the
instrument and the user, and will remain the same for all readings taken provided the scale
is linear.

Remember that measurement of a quantity (such as length) also involves a zero reading, so
the error in the quantity will be twice the reading error. Note that it is essential to
quote an error with every set of measurements.

Absolute Uncertainty The estimation of an error interval gives what is called an “ab-
solute” uncertainty. It has the same units as the measurement itself; e.g. (6.540 ± 0.002)
cm. The absolute uncertainty 0.002 cm is recorded to one significant figure, which in turn,
defines the last significant digit in a measurement.

When using meter ruler, micrometer screw, or Vernier caliper, you will be required to
interpolate between scale divisions. For most of this type of instruments it is reasonable to
estimate the absolute uncertainty as ± half of the smallest scale division.

When using weights, with mass written on them, the absolute uncertainty should be taken
as half of the last significant digit. For example, for the mass m = 200 g, the absolute
uncertainty is δm = 0.5g. When using digital instruments, such as digital multimeters, the
absolute uncertainty is the sum of a reading error and an instrument error. The reading
error is ± last stable digit displayed, for example, if the digital voltmeter reading is 11.6 V,
the reading error is ± 0.1 V. The instrument error is specified by the manufacturer, which
usually is 1.5% of the reading value. For example, if the digital voltmeter reading is 11.6
V, the instrument error is (0.015)(11.6 V) = 0.2 V. The total uncertainty is 0.1 V + 0.2 V
= 0.3 V. The voltmeter reading should be recorded in the form: (11.6 ± 0.3) V.

Relative and Percentage Uncertainties Frequently a statement of the absolute un-
certainty δx, is not as meaningful as a comparison of the size of the uncertainty with the size
of the measurement itself, x. This comparison is expressed by a relative uncertainty:

δx

x
in the case above would be

0.03

2.56
� 0.01

or expressed as a percentage uncertainty:

0.03× 100

2.56
� 1%

An uncertainty δx = ±0.2cm, for example, is much more important in a measurement of
2cm (δx/x = 0.1or 10%) than in a measurement of 2m (δx/x = 0.2/200 = 0.001or 0.1%).
Relative and percentage uncertainties have no units.
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Uncertainties in Calculated Quantities Very rarely are the measurements themselves
the desired end-products of an experiment. Usually the measurements are used to calcu-
late something. How are the uncertainties in the measurement compounded when these
measurements are used in calculations?

Until you have studied differentials in math, you can calculate errors compounded in com-
putation using the rules which follow. These are derived by a differential method (Appendix
B).

RULE 1: For Addition and Subtraction

Whenever only addition and/or subtraction occur in a calculation
the resultant absolute uncertainty in the answer is the sum of the absolute
uncertainties of all the measured quantities occurring in the calcu-
lation.

Example: Let x = 2.66±0.02 and y = 1.79±0.02. Find the magnitudes of the uncertainties
of (x + y) and (x − y).

Solution:

(x+ y)

2.66± 0.02

+1.79± 0.02

4.45± 0.04

(x− y)

2.66± 0.02

−1.79± 0.02

0.87± 0.04

This is reasonable since

x = 2.66± 0.02 → 2.64 ≤ x ≤ 2.68

y = 1.79± 0.02 → 1.77 ≤ y ≤ 1.81

Adding and subtracting in the most unfavourable ways to obtain the maximum possible
uncertainty gives

4.41 ≤ (x + y) ≤ 4.49

0.83 ≤ (x − y) ≤ 0.91

which can be expressed as 4.45± 0.04 and 0.87± 0.04 as above.

RULE 2: For Multiplication and Division

Whenever only multiplication and/or division occur, the relative uncertainty
of the product or quotient is equal to the sum of the relative uncertainties
of each factor in the function.
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Example: Let x = 2.66 ± 0.02 and y = 1.79 ± 0.02. Find the magnitudes and the uncer-
tainties of z = (x × y) and w = (x/y).

Solution:

z = (x× y) = 2.66× 1.79 = 4.7614

δz

z
=

δx

x
+

δy

y

δz

z
=

0.02

2.66
+

0.02

1.79
δz

z
= 0.0075 + 0.011

δz

z
= 0.0185

where z = 4.7614 so,

δz = 0.0185× 4.7614 = 0.088 = 0.09

Therefore, z = (4.76± 0.09)

Please observe that the uncertainty δz = 0.09 was rounded to one significant figure.

Similarly,

w = (x/y) = 2.66/1.79 = 1.486

δw

w
=

δx

x
+

δy

y

δw

w
=

0.02

2.66
+

0.02

1.79
δw

w
= 0.0185

where w = 1.486 so,

δw = 0.0185× 1.486 = 0.02749 = 0.03

Therefore, w = (1.48± 0.03)

Where addition and/or subtraction and multiplication and/or divisions are all involved in
one formula, the calculation is more complicated. The rules, above, should then be applied
to one part of the function at a time and then combined.

Example: Find the uncertainty of the quantity given by the expression Z = AB2 +
CD2 where A� B� C� D are measured quantities, and δA� δB� δC� δD are the corresponding
absolute uncertainties.

Solution:
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Let I1 = AB2 = A × B × B and I2 = CD2 = C × D × D

δI1
I1

=
δA

A
+

δB

B
+

δB

B
�

δI2
I2

=
δC

C
+

δD

D
+

δD

D

δI1
I1

=
δA

A
+

2δB

B
�

δI2
I2

=
δC

C
+

2δD

D

δI1 =
�δA

A
+

2δB

B

�
I1 � δI2 =

�δC

C
+

2δD

D

�
I2

δI = δI1 + δI2 =
�δA

A
+

2δB

B

�
I1 +

�δC

C
+

2δD

D

�
I2

δI =
�δA

A
+

2δB

B

�
AB2 +

�δC

C
+

2δD

D

�
CD2

δI = B2δA + 2ABδB + D2δC + 2CDδD

In the calculation of uncertainties, it is generally assumed that whole numbers occurring in
formulas have no uncertainty. Similarly, when using physical constants in formulas (such
as g), one usually includes more significant figures than the measured quantities in the
experiment, so that uncertainty of such physical constants is negligible.

Since uncertainties are only estimated, they should never be quoted to more than one
or two significant figures. Also, because their accuracy is limited, approximations and
simplifications can often be made which make their actual calculation much easier.

RULE 3: For Multiplication/Division with constant

Whenever multiplication with an exact/known number with no un-
certainty occurs, the uncertainty is the product of the absolute value
of known number times the uncertainty.

Example: Find the uncertainty of the quantity given by the expression y = Bx, where
x = 2.66± 0.02 and B is exactly 4 with no uncertainty.

Solution:

y = Bx = 4× 2.66 = 10.64

δy = �B� × 0.02 = 0.08

Therefore, y = (10.64± 0.08)

11



Introductory Information

Rules for Stating Uncertainties and Answers Uncertainties are only estimated and
as such they should be rounded to one significant figure. The only exception to this rule
is when the leading digit in the uncertainty is 1. In this case two significant digits might
be justified. For example, the uncertainty 0.14 rounded to one significant digit would be
reduced very significantly.

The final answer of the measured or calculated quantity should have the last significant
digit in the same decimal position as the uncertainty.

Example:

(26.3± 0.5)s

(48± 2)m

(36.82± 0.06)N

(15.34± 0.14)× 102kg

Comparison Occasionally in the lab you will be asked to compare.

1. several values for the same quantity which you have measured using different methods.

2. a value which you have measured or calculated with a standard value in a table.

In scientific terms the word compare means more than a comparison by eye alone - it
means a mathematical comparison.

In case (1) the best way to compare the value is to calculate what percentage the average
deviation is of the mean (Appendix A).

In case (2), if your measurement has an uncertainty associated with it, then you should see
whether the range of your measured values including your uncertainty is consistent with
the standard (accepted) value. You should ask the question does:

�your value− standard value� ≤ your uncertainty

If the above it true, then measurement agrees with the standard value.

In case (2) if your measurement does not contain an uncertainty, it may be instructive to
calculate the percentage difference.

�your value− standard value�

standard value
× 100%

For more information on how errors and uncertainties are determined, please see Talyor, J.R.
An Introduction to Error Analysis: The study of uncertainties in physical measurements,
University Science Books, 1997.
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0.3 Graphs

In this course it will frequently be necessary to plot a series of results on graph paper. A
graph is often the most concise and meaningful way to display data. Plotting experimental
data and deriving significant information from the resulting graph is rather different from the
process of plotting the graph of a known analytic function. An experimental measurement is
not exact, but rather is represented by a small range of possible values; e.g. 2.38 ≤ x ≤ 2.42
which we usually express as x = 2.40± 0.02; or y = 1.42± 0.03.

On a graph we would represent the uncertainty by plotting the point as shown in Fig 2
where the two error bars cross at (2.40� 1.42) and their lengths are 2 × 0.02 along the x
direction and 2× 0.03 along the y direction.

Figure 2: Plotted data point with Error Bar

Once the points are plotted, the task is to draw the best smooth curve (usually this will
be a straight line) through the field of points. Due to the uncertainties the experimental
points will never fall exactly on the analytic curve which you try to fit to them. Draw the
curve which comes closest to the most points and in general lies within the error bars of all
points.

Generally, one variable is under your control; and is known as the independent variable,
by convention this is plotted on the horizontal, x axis. The second measured quantity will
vary in some dependent way as you vary the first quantity and is called the dependent
variable, and is plotted on the vertical, y axis.

The following general guidelines should be used when preparing graphs:

0.3.1 Labeling

Graphs should have some kind of title to give meaning to the data displayed. For example,
Variation of length of rubber band with load is a meaningful title, where as Length vs load
is not good enough. Axes should always be labelled with the name of the quantity being
displayed and the units in which it is measured. e.g. Spring extension (mm).
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0.3.2 Scales

Aim to spread your data out across as much of the graph paper as possible. If the value
for one variable extended from, say, 90 to 212 (units) it would not be necessary to fit in a
scale from 0 to 220 (units) but only from 90 to 220 units. Unless, of course, you do know,
or want to know, something about the situation at the zero value.

Avoid the tendency to force the extrapolation of a graph through the origin even if intuition
tells you it should go there. Limitations of apparatus and other side effects of which you are
not aware cause unusual results close to the origin. Thus, by forcing your graph through
the origin, you may be distorting it in the region of interest and thereby distorting the
information which you wish to obtain. Draw your graph considering only the region in
which measurements were taken. Extrapolations are often risky.

0.3.3 Plotting

Always plot raw figures if possible, which need not be in conventional units, e.g. a spark
device makes points on a paper 5 times per second; when plotting, one axis could be labelled,
Time from start, �1/5 sec), rather than dividing all time values by 5 to give seconds. Convert
to conventional units when the required information is taken from the graph.

Draw graphs with a sharpened pencil so that mistakes can be erased. A transparent ruler is
particularly useful for deciding on the best straight line through experimentally determined
points. Coordinates will be in an appropriately labelled table in your report and not beside
the points so as not to clutter up the graph.

0.3.4 Straight Line Graphs

Without the aid of a computer, the one graph from which we can easily extract useful
information is a straight line graph. If the relationship between two variables is in the
standard straight line form, y = mx + b, a straight line graph of y vs x can be plotted and
the constants m and b thereby determined: m is the slope of the straight line and b is the
y-intercept.

Often it will not be convenient to start the x-axis at 0 and hence the y-intercept will not
occur on the graph, but b can easily be determined, once m is known, by substituting the
co-ordinates of one point on the line into the equation of the line (recall that each and every
point on a line must satisfy the equation of the line).

You will often be required to plot experimental results in such a way as to obtain a straight
line graph.

0.3.5 To Determine the Slope

Once the line has been drawn 3 you will probably need to calculate its slope to determine
some information pertinent to the experiment.
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Figure 3: Determining the Slope from Plotted Data

From analytical geometry

m =
y2 − y1
x2 − x1

=
rise

run

Where (x1� y1) and (x2� y2) are points which lie on the line. Since your experimental points,
in most cases, do not lie exactly on the line, do not use them for determining the slope.
Instead, choose two arbitrary points lying (exactly) on the line as far apart as possible
and determine the slope from them (draw in the rise and run or in some way indicate the
points you have used).

Since the variables you plot will be physical quantities with units, the rise and run should
be given units and the slope will also have units.

In the era of computers, another method is frequently used to calculate slope and the
uncertainty in the slope. It is called the Method of Least Squares and is described below.
For large amounts of data a computer is very useful, however for small numbers of data
this method can be carried out by hand as well� This method also allows one to obtain the
uncertainty in the slope.

0.3.6 The Method of Least Squares

The method of least squares is used when one wishes to fit a set of data to a given equation.
We shall deal with the simplest of cases, the straight line.

Consider Fig.4. The mathematically best straight line through the set of data points is
shown, together with the data. Not every data point falls on the line. There is a difference
between the fitted y value and the actual y value. The purpose of least squares is to minimize
these deviations over all the data points (N points).

The equation of a straight line may be given by:

y = mx + b
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Figure 4: Data with a Linear Fit

The difference between the fitted y, on the straight line, and the actual yi may be given
by:

b + mxi − yi

Summing the squares of these differences gives us the total square uncertainty, or (if divided
by N) the variance.

σ =
�

(b + mxi − yi)
2

where
�

means ”the sum over all data points”. It is the sum that we wish to minimize.
We accomplish this by taking the derivative of σ with respect to each of the individual
parameters b and m and set these simultaneously equal to zero.

The derivatives with respect to b only may be expressed as:

∂σ

∂b
= 2

�
(b + mxi − yi) = 0 follows from simple calculus

The operator ∂/∂b means ”take the derivative with respect to b only and treat all other
numbers as constant”.

Expanding the summation, dropping the factor of 2, and moving the term with yi to the
right of the equals sign gives:

�
b +

�
mxi =

�
yi

the parameters b and m can be moved from inside the summation, as they do not change
during the summations, i.e.:

bN + m
�

xi =
�

yi

The parameter b is multiplied by N , the number of data points, as summing the constant,
b, N times is bN .
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Similarly:

∂σ

∂m
= 2

�
(bxi + mx2

i − xiyi) = 0

and this equation may be manipulated as the one for b:

�
bxi =

�
mx2

i =
�

xiyi

to yeild

b
�

xi + m
�

x2

i =
�

xiyi

solving equations gives:

Intercept : b =
(
�

x2

i
)(
�

yi)− (
�

xiyi)(
�

xi)

N(
�

x2

i
)− (

�
xi)2

Slope : m =
N(

�
xiyi)− (

�
xi)(

�
yi)

N(
�

x2

i
)− (

�
xi)2

In order to find the best straight line through a given set of data points, one needs to know
the number of points, the sums

�
xi,

�
x2

i
,
�

yi and
�

xiyi then substitute these into the
equations above. Note that the denominators in the equations are the same and, therefore,
need only be calculated once.

The uncertainties of the slope and intercept are given by the following expressions:

Uncertainty in Slope : δm =

��
[(yi − y)− m(xi − x)]2

(N − 2)
�

(xi − x)2

where : x = mean(x) =

�
xi

N
and y = mean(y) =

�
yi

N

Uncertainty in Intercept : δb =

�
[
�

(yi − b − mxi)2](
�

x2

i
)

N(
�

x2

i
)− (

�
xi)2

The method of least squares requires the evaluation of a few complicated expressions. To
evaluate these expressions precisely and quickly, it is worth setting up a table or a computer
program.
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0.3.7 Logarithmic Graphs and Exponential Data

In some experiments, you will collect data which does not fit to straight line, rather to an
exponential. Suppose variable p and q are related by the expression:

q = A0e
T p, where A0� T are constants, and e is Euler’s number

Taking the natural logarithm of both sides gives

ln(q) = ln(A0) + ln(eT p)

ln(q) = ln(A0) + Tp

compare this result to an equation for a straight line:

y = b + mx

Suppose now we collected data x� y which had this expected exponential trend. If we were
to plot x vs ln(y) then the results would be a straight line whose slope m would be equal to
the constant T , and whose y-intercept b would be equal to the ln(A0). This is a convenient
a powerful method of determining parameters of an exponential trend using normal graph
paper. An alternative method would be to use Semi-Logarithmic graph paper, which has
the y-axis as on a logarithmic scale and the x-axis on a linear scale. In this way, plotting
the raw x and y data would yield a straight line.
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