PHYSICS 1012

Test \#1 Equation Sheet

"Never memorize something you can look up." - Albert Einstein

Constants and Conversion Factors

$$
\begin{aligned}
1 \mathrm{~m}=10^{6} \mu \mathrm{~m}=10^{9} \mathrm{~nm} & =10^{10} \AA=10^{12} \mathrm{pm}=10^{15} \mathrm{fm} \\
1 \mathrm{GeV}=10^{3} \mathrm{MeV} & =10^{6} \mathrm{keV}=10^{9} \mathrm{eV}=1.6022 \times 10^{-10} \mathrm{~J} \\
e & =1.6022 \times 10^{-19} \mathrm{C} \\
\varepsilon_{0} & =8.85418781762 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\
1 / 4 \pi \varepsilon_{0} & =8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
c & =2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} \sim 3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
k_{B} & =1.380649 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K} \\
N_{A} & =6.02214076 \times 10^{23} \text { per mole } \\
R & =8.3144 \mathrm{~J} /{ }^{\circ} \mathrm{K} \cdot \mathrm{~mol} \\
\sigma & =5.67 \times 10^{-8} \mathrm{~J} / \mathrm{s} \cdot \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{K}^{4} \\
m_{e} \text { (the electron mass) } & =9.11 \times 10^{-31} \mathrm{~kg} \\
M_{p} \text { (the proton mass) } & =1836 m_{e}
\end{aligned}
$$

Work:

$$
W=\Delta U=-\int \vec{F} \cdot d \vec{s} \quad \Delta U=Q \Delta V
$$

Coulomb's Law:

$$
\vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{|\vec{r}|^{2}} \hat{r}
$$

The Electric Field:

$$
\vec{F}(x, y, z)=Q \vec{E}(x, y, z)
$$

Energy density stored in an electric field: $\quad u_{E}=\frac{1}{2} \varepsilon_{0}|\vec{E}|^{2}$
For a point charge;

$$
|\vec{E}|=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
$$

For an infinite uniformly charged line;

$$
|\vec{E}|=\frac{\lambda}{2 \pi \varepsilon_{0} \ell}
$$

For an infinite uniformly charged sheet;

$$
|\vec{E}|=\frac{\sigma}{2 \varepsilon_{0}}
$$

At a distance ℓ away along the bisector of an electric dipole $(\vec{p}=q \vec{d})$;

$$
\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{-\vec{p}}{\left[\ell^{2}+(d / 2)^{2}\right]^{3 / 2}}
$$

For a dipole \vec{p} in an external field $\vec{E} ; \quad \vec{\tau}=\vec{p} \times \vec{E}$
Gauss' Law:

$$
\Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\varepsilon_{0}}
$$

Electric Potential:

$$
\Delta V=V_{b}-V_{a}=-\int_{a}^{b} \vec{E} \cdot d \vec{s}
$$

At a distance r from a point charge q with $V(r=\infty)=0$;

$$
V(r)=\frac{q}{4 \pi \varepsilon_{0} r}
$$

Electrical Properties of Materials:

$$
i=\frac{d q}{d t}=\int \vec{j} \cdot d \vec{A} \quad \vec{j}=-e n \vec{v}_{d} \quad|\vec{j}|=\frac{i}{A}
$$

For ohmic materials:

$$
R=\rho \frac{L}{A} \quad \Delta V=i R
$$

DC Circuits: $\quad P=\Delta V i=i^{2} R=\Delta V^{2} / R$

Kirchoff's Laws

Current Law: At a junction $\sum i_{\text {in }}=\sum i_{\text {out }}$
Voltage Law: For a closed loop $\sum \Delta V=0$

The equivalent resistance R for N resistors:

- On the same current path

$$
R=\sum_{i=1}^{N} R_{i}
$$

- Having the same potential difference across them

$$
\frac{1}{R}=\sum_{i=1}^{N} \frac{1}{R_{i}}
$$

Capacitors: $Q=C \Delta V$ $U=Q^{2} / 2 C$

Parallel-plate capacitor:

$$
C=\varepsilon_{0} \frac{A}{d}
$$

With a dielectric filling the space between plates $C^{\prime}=\kappa_{e} C$
The equivalent capacitance C for N capacitors:

- On the same current path

$$
\frac{1}{C}=\sum_{i=1}^{N} \frac{1}{C_{i}}
$$

- Having the same potential difference across them

$$
C=\sum_{i=1}^{N} C_{i}
$$

For a charging capacitor in series with a resistance R :

$$
\begin{gathered}
\Delta V(t)=\Delta V\left(t_{0}\right)\left(1-e^{-\left(t-t_{0}\right) / \tau}\right) \\
\tau=R C
\end{gathered}
$$

Magnetic Force:

On a moving charge at the instant it is at the location (x, y, z)

$$
\vec{F}(x, y, z)=q \vec{v}(x, y, z) \times \vec{B}(x, y, z)
$$

On a current-carrying wire;

$$
\vec{F}=i \vec{L} \times \vec{B}
$$

Torque on a current-carrying loop of N turns: $\vec{\tau}=N i \vec{A} \times \vec{B}$

Magnetic Field:

Due to a moving charge:

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{|\vec{r}|^{2}}
$$

Around a long, thin, straight current-carrying wire:

$$
|\vec{B}|=\frac{\mu_{0} i}{2 \pi d}
$$

Along the axis of a thin, current-carrying ring of radius R :

$$
|\vec{B}|=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+d^{2}\right)^{3 / 2}}
$$

Inside an ideal solenoid:

$$
|\vec{B}|=\mu_{0} n i
$$

Magnetic Dipole Moment:

$$
\vec{\mu}=i \vec{A} \quad \vec{\tau}=\vec{\mu} \times \vec{B} \quad U=-\vec{\mu} \cdot \vec{B}
$$

Volumes and Areas:

Area of a circle of radius R and area of the side of a cylinder of length ℓ and radius R;

$$
A=\pi R^{2} \quad A=2 \pi R \ell
$$

Volume and surface area of a sphere of radius R;

$$
V=\frac{4}{3} \pi R^{3} \quad A=4 \pi R^{2}
$$

Vectors, Trigonometry, Derivatives, Complex Numbers

We will use Cartesian coordinates throughout.

Vectors

$$
\begin{aligned}
\vec{A} & =|\vec{A}| \hat{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
|\vec{A}| & =\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \\
\hat{A} & =\frac{\vec{A}}{|\vec{A}|}=\frac{\vec{A}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}} \\
\vec{C} & =C_{x} \hat{i}+C_{y} \hat{j}+C_{z} \hat{k} \\
& =\vec{A}+\vec{B} \\
& =\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j}+\left(A_{z}+B_{z}\right) \hat{k} \\
\vec{A} \cdot \vec{B} & =|\vec{A}||\vec{B}| \cos \theta \\
& =\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right) \\
\vec{A} \times \vec{B} & =|\vec{A}||\vec{B}| \sin \theta \hat{n} \\
& \text { where } \hat{n} \text { is the unit direction vector normal to the } \vec{A} \vec{B} \text { plane } \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}
\end{aligned}
$$

Derivatives

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} A \cos b x & =-A b \sin b x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} A \sin b x & =A b \cos b x \\
\frac{\mathrm{~d} A x^{ \pm b}}{\mathrm{~d} x} & = \pm A b x^{ \pm b-1} \\
\frac{\mathrm{~d} A e^{ \pm b x}}{\mathrm{~d} x} & = \pm A b e^{ \pm b x}
\end{aligned}
$$

Trigonometry

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\sin 2 \theta & =2 \sin \theta \cos \theta \\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
\sin (\theta \pm \phi) & =\sin \theta \cos \phi \pm \cos \theta \sin \phi \\
\cos (\theta \pm \phi) & =\cos \theta \cos \phi \mp \sin \theta \sin \phi \\
\sin \theta \pm \sin \phi & =2 \sin \left[\frac{1}{2}(\theta \pm \phi)\right] \cos \left[\frac{1}{2}(\theta \mp \phi)\right] \\
\cos \theta+\cos \phi & =2 \cos \left[\frac{1}{2}(\theta+\phi)\right] \cos \left[\frac{1}{2}(\theta-\phi)\right] \\
\cos \theta-\cos \phi & =-2 \sin \left[\frac{1}{2}(\theta+\phi)\right] \sin \left[\frac{1}{2}(\theta-\phi)\right]
\end{aligned}
$$

